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Abstract
The effectiveness of antibiotics against Pseudomonas aeruginosa (P. aeruginosa) infections is limited by inherent antimi-
crobial resistance, prompting researchers to seek advanced and cost-effective antibacterial agents. This opportunistic bac-
terium exhibits drug resistance and regulates its pathogenicity through quorum sensing (QS) mechanisms, suggesting that 
disrupting these systems could be a promising approach to treating P. aeruginosa infections. In this study, we investigated the 
antibacterial properties of silver nanoparticles (AgNPs), zinc oxide nanoparticles (ZnONPs), and copper oxide nanoparticles 
(CuONPs) in conjunction with QS systems, focusing on the LasI/R, RhlI/R, and PqsA/PqsR pathways. A computational 
approach was utilized to examine the interaction patterns between these nanoparticles and QS signaling proteins in P. aerugi-
nosa through multiple bioinformatics techniques. The interaction of metals and metal oxides with acyl-homoserine-lactone 
synthases (LasI, RhlI, PqsA) can impede the binding of precursor molecules, thereby inhibiting the synthesis of functional 
signaling molecules. Moreover, the binding of nanoparticles to regulatory proteins (LasR, RhlR, PqsR) competes with 
functional signaling molecules, resulting in a reduced expression of QS-controlled genes. Among the nanoparticles studied, 
ZnONPs exhibited the highest affinity toward the selected targets. In particular, the PqsA-ZnONPs complex showed stable 
active binding sites and a high binding affinity (− 3.83 kcal/mol), indicating strong interaction with the active pocket of the 
pathogen P. aeruginosa (PqsA: 5OE3). ZnO nanoparticles demonstrated significant potential as antimicrobial agents against 
P. aeruginosa by disrupting its QS systems. This approach presents a promising direction for developing therapeutic strate-
gies to combat antibiotic-resistant bacteria, including P. aeruginosa.

Keywords  Antibiotic resistance · Molecular docking · Molecular dynamic simulations · Nanoparticles · Pseudomonas 
aeruginosa · Quorum sensing

1  Introduction

Pseudomonas aeruginosa (P. aeruginosa), an opportun-
istic Gram-negative bacterial pathogen, is responsible for 
approximately 14% of nosocomial infections in immuno-
compromised patients [1, 2]. Its persistence, growing anti-
microbial resistance, and increased virulence often result in 
bacteremia, significantly raising the risk of morbidity and 
mortality in hospitalized individuals [3]. Additionally, the 
pathogen’s inherent ability to form biofilms further exacer-
bates its antimicrobial resistance [4, 5].

A biofilm constitutes a gathering of microbial cells that 
forms irreversibly on surfaces, whether biotic or abiotic, 
enveloped within a self-produced matrix [6]. Incorporating 
into the extracellular polymeric matrix serves as a survival 
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strategy for P. aeruginosa amidst environmental fluctuations, 
aiding in its evasion of host defenses and antimicrobial chal-
lenges, thereby heightening the pathogen’s virulence [6–8]. 
Additionally, biofilm formation relies on cell-to-cell com-
munication and signaling that are contingent upon cell den-
sity. Quorum sensing (QS) is the most known mechanism 
for bacterial communication and signaling in which cells 
produce and react to small chemical signaling molecules 
called autoinducers [9, 10]. This process enables bacteria to 
engage in cell-to-cell interactions, facilitating the exchange 
of information in response to environmental stimuli [11, 12]. 
As illustrated in Fig. 1, for P. aeruginosa, the QS system 
functions primarily through three distinct pathways: LasI-
LasR, RhlI-RhlR, and PqsA-PqsR, all of which are closely 
interconnected with each other [13, 14]. In reaction to the 
increase in bacterial cell density, autoinducers N-3-oxodode-
canoyl-L-homoserine lactone (3O-C12-HSL), N-butanoyl-
L-homoserine lactone (C4-HSL), and the Pseudomonas 
quinolone signal (PQS) are synthesized and bind to their 
corresponding receptors (LasR, RhlR, and PqsR), thereby 
orchestrating the transcriptional regulation of target genes 
[9]. Notably, the synthesis of PQS is regulated by the pqs-
ABCDEH operon, PQS is most abundantly produced dur-
ing the late stationary phase of growth, acting as a bridge 
between the Las and Rhl QS systems [15, 16]. The produc-
tion of extracellular polymeric substances, exotoxin A, lasA 
protease, lasB elastase, rhamnolipid, lectin, pyocyanin, pyo-
verdine, and HCN, in P. aeruginosa is regulated by QS cas-
cades, which enhance the bacterium’s invasiveness [17, 18].

It was reported in previous studies that the malfunction 
of the QS system reduces the virulence of P. aeruginosa and 
leads to the formation of a vulnerable flat biofilm susceptible 
to antibiotics [19, 20]. Thus, disrupting the bacterial QS sys-
tem could be beneficial for treating various diseases, given 
the pivotal role of QS systems in regulating virulence [21]. 
Therefore, inhibiting QS is considered a promising strategy 
to combat P. aeruginosa infections [22], as it can effectively 

prevent biofilm formation, reduce bacterial virulence, and 
carry a low risk of inducing bacterial resistance. The alarm-
ing increase in multidrug-resistance cases highlights the 
urgent need to explore alternative therapeutic approaches 
to address biofilm formation and inhibit QS system [10].

The process of QS can be disrupted by targeting different 
stages of the pathway [23–25]: (i) Inhibiting the biosynthe-
sis of signaling molecules, which are catalyzed by specific 
enzymes, can block QS by interfering with the activity of 
these synthetases or the substrates required for signal pro-
duction. (ii) Degrading signal molecules is another approach 
that prevents them from reaching the threshold concentration 
needed to activate QS. (iii) Finally, competitive interference 
with signal receptors can prevent natural signal molecules 
from binding, thereby regulating biofilm formation. These 
mechanisms underscore the importance of QS inhibitors 
(QSIs) in reducing bacterial virulence and disrupting bio-
film formation.

In recent years, many researchers have started using nano-
technology to develop next-generation nano-antimicrobials, 
including QS nano-inhibitors. For example, metal and metal 
oxide nanoparticles (NPs) such as silver (AgNPs), zinc 
oxide (ZnO NPs), and copper oxide (CuO NPs) have been 
used to combat pathogens [26–29]. These nanoparticles are 
sometimes combined with traditional antibiotics to increase 
their effectiveness [30–35]. The antimicrobial properties of 
nanoparticles can be associated with their ability to degrade 
signal receptor proteins or inhibit the synthesis of signaling 
molecules. This leads to a reduction production of virulence 
factors such as elastase, pyocyanin, and biofilm components 
in P. aeruginosa [36]. These nanoparticles offer numerous 
advantages, including improved mucus and biofilm penetra-
tion, increased solubility, efficient delivery, and sustained 
activity of QS inhibitors [37].

In the present study, an in-silico analysis was performed 
to predict the potential binding sites of silver, zinc oxide, 
and copper oxide nanoparticles on QS-regulated autoinducer 

Fig. 1   Schematic diagram of the 
Las, Rhl, and Pqs QS systems 
in P. aeruginosa. These three 
major systems use 3-oxo-C12-
HSL, C4-HSL, and HHQ/PQS 
molecules for intercellular com-
munication
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synthase proteins (LasI, RhlI, and PqsA) in P. aeruginosa. 
Additionally, the study examined the interactions between 
these nanoparticles and QS-controlled transcriptional regu-
latory proteins (LasR, RhlR, and PqsR) to characterize the 
types of interactions between the nanoparticles and the 
QS proteins. Finally, molecular dynamics (MD) simula-
tions were conducted to explore the stability of the docked 
complexes that exhibited the highest affinity throughout the 
simulation period of 100 ns.

2 � Material and Methods

2.1 � Selection of Quorum Sensing Proteins in P. 
aeruginosa

The quorum sensing proteins of P. aeruginosa, including 
LasI (acyl-homoserine-lactone synthase), LasR (transcrip-
tional activator protein), PqsA, PqsR (Pseudomonas qui-
nolone signal), RhlI (acyl-homoserine-lactone synthase), 
and RhlR (transcriptional activator), were selected because 
of their key roles in QS regulation and the activation of mul-
tiple QS pathways, as outlined in the literature [38]. The 
crystal structures of these proteins were obtained from the 
Protein Data Bank (LasI, PDB ID 1RO5; LasR, PDB ID 
3IX3 chain A; PqsA, PDB ID 5OE3; PqsR, PDB ID 4JVI) 
and analyzed using AutoDockTools [39]. The LasR protein 
has two similar chains, A and B, both of which contain co-
crystallized ligands.

2.2 � Homology Modeling

Homology modeling was used to generate the 3D structures 
of the RhlI and RhlR proteins. The amino acid sequences 
of these proteins (UniProtKB IDs P54291 and P54292) 
were used for structure prediction via Swiss-Model server 
(http://​swiss​model.​expasy.​org/). Quality assessments were 
conducted using QMEAN and QMEANDisCo scores [40, 
41], and Ramachandran plot assessments were conducted 
using MolProbity v4.4 [42]. Finally, the overall reliability 
and additional quality assessment of the protein models were 
conducted using ERRAT analysis [43].

2.3 � Active Site Prediction

The prediction of active site residues within the receptors 
was conducted using the Prank Web online tool [44] (https://​
prank​web.​cz/). The results were then compared with find-
ings from the literature to confirm accuracy and relevance 
[45–48].

2.4 � PubChem Data for Nanoparticle Structures

The SDF files for silver (PubChem CID: 23,954), zinc oxide 
(PubChem CID: 14,806), and copper oxide (PubChem CID: 
14,829) nanoparticles were obtained from the PubChem 
database and converted to PDB format using Avogadro [49].

2.5 � Molecular Docking Study

The docking was performed using AutoDockTools 1.5.7 
software [50]. The dimensions of the GRID box are reported 
in Table S1, with specific dimensions and centers of each 
receptor specified in Table S2. A grid spacing of 0.375 Å 
was set. The ligand–protein interactions were visualized 
using Discovery Studio Visualizer and PyMOL [51, 52].

2.6 � Molecular Dynamic (MD) Simulation

The Desmond program from Schrödinger was utilized to 
perform 100 ns MD simulations on the quorum-sensing 
proteins of P. aeruginosa with selected nanoparticles that 
exhibited the highest binding energies. This approach aimed 
to investigate their binding strengths over time [53, 54]. The 
TIP3P explicit water model was used to set up an orthorhom-
bic simulation box with a 10 Å distance between the protein-
nanoparticle complex and the box walls. Counter ions were 
added to achieve an isosmotic environment and neutralize 
charges, maintaining a concentration of 0.15 M NaCl. The 
system underwent optimization through 2000 iterations 
with a merging criterion of 1 kcal/mol. Molecular dynamics 
(MD) simulations were performed on the minimized energy 
complex system. Temperature and pressure were maintained 
at 300 K and 1.013 bar, respectively, throughout the simula-
tion. Trajectories were recorded every 9.6 ps, and energy 
was sampled every 1.2 ps. These trajectories were used to 
generate simulation diagrams at the end of the simulation.

3 � Results and Discussions

3.1 � Quality Assessment of RhlI and RhlR 3D Models

The focus of this study was on the P. aeruginosa proteins 
LasI, LasR, RhlI, RhlR, PqsA, and PqsR. The secondary 
structures of LasI, LasR, PqsA, and PqsR are available in 
the Protein Data Bank (PDB). However, the 3D structures of 
RhlI and RhlR are not available. Therefore, RhlI and RhlR 
were modeled to facilitate further analysis.

For the 3D model of RhlI, the QMEAN score 
was − 1.55 and the Global Model Quality Estimation 
(GMQE) score was 0.93. Ramachandran plot analysis 
performed using MolProbity v4.4 showed that 96.48% 
of the residues were in the allowed region, and 0% of the 

http://swissmodel.expasy.org/
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https://prankweb.cz/
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residues were rotamers (Fig. 2a). Furthermore, none of 
the 1630 bonds in the model showed discordance in the 
MolProbity analysis. Similarly, for RhlR, the QMEAN 
score was − 0.31, and the GMQE score was 0.85. The 
Ramachandran plot revealed that 97% of the residues 
were in the allowed region, while 0.73% of the residues 
were rotamers, specifically Ser 182B, Met 18B, and Met 
18A. Additionally, Asn 129A and Asn 129B were iden-
tified as Ramachandran outliers, constituting 0.43% of 
the residues (Fig. 2b). None of the 3890 bonds in the 
RhlR model showed discordance according to MolProbity 
analysis. The cumulative MolProbity score was 0.85 for 
RhlI and 1.21 for RhlR. These results demonstrated that 
the quality of the constructed models was consistent with 
published parameters for homology modeling [55, 56].

3.2 � Assessment of Target Protein Interactions 
with AgNPs, ZnONPs, and CuONPs

Metal and metal oxide nanoparticles, such as silver, zinc oxide, 
and copper oxide, offer effective alternatives to conventional 
antibiotics, especially in the context of antibiotic resistance [28, 
57]. These nanoparticles operate through distinct mechanisms, 
including quorum sensing inhibition, to combat resistant bac-
teria [58]. Their varied interactions with biomolecules further 
reduce the likelihood of new resistant strains, making them 
strong candidates for addressing antibiotic resistance [59].

Computational molecular docking studies have become 
essential for revealing the mechanisms underlying the anti-
bacterial effects of nanoparticles and for advancing our 
understanding of their interactions with biological tar-
gets [60]. Targeting the QS system of pathogens like P. 
aeruginosa presents a significant opportunity to combat 

Fig. 2   Ramachandran plots for a RhlI and b RhlR from SWISS-
MODEL, illustrating angles in favored, allowed, and unfavored 
regions. The plots show that 96.48% of RhlI residues and 97% of 

RhlR residues are in the allowed regions, with RhlR having 0.73% 
rotamers and specific outliers (Ser 182B, Met 18B, and Met 18A)
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drug-resistant microbes. In this study, we concentrated on 
the LasI/R, RhlI/R, and PqsA/R systems, which are estab-
lished targets of QS. Our molecular docking simulations 
provided insights into the binding affinities and inhibitory 
mechanisms of AgNPs, ZnONPs, and CuONPs against these 
QS proteins.

AutoDockTools was used for molecular docking, reveal-
ing that AgNPs, CuONPs, and ZnONPs successfully docked 
into AHL synthases LasI and RhlI, as well as regulatory 
activator proteins LasR and RhlR, and the transcriptional 
proteins PqsA and PqsR. The docked structures were visual-
ized using Discovery Studio and PyMol, showing that the 
metallic nanoparticles were “locked” into the active sites 
of the specific QS proteins through interactions with the 
surrounding amino acid residues. Detailed data, including 
hydrogen bonds, hydrophobic bonds, binding energies, and 
predicted inhibition constants (Ki), are presented in Table 1. 
The QS receptor proteins LasR, RhlR, and PqsR, in conjunc-
tion with their respective natural signaling molecules (3-oxo-
C12-HSL, C4-HSL, and PQS), regulate the expression of 
virulence factors, biofilm formation, bacterial motility, and 
other processes in P. aeruginosa [61]. However, competitive 
ligands with higher binding affinities to these receptors can 
inhibit these natural signaling molecules, potentially reduc-
ing QS-dependent factor formation.

To further investigate these interactions, we used the 
PrankWeb server to predict potential binding sites in each 

QS protein, confirming that the active site residues are 
identical to those reported in the literature [45, 47, 48]. 
Table 1 and Figs. 3, 4, 5, 6, 7, and 8 provide detailed 
information on binding energies, inhibition constants, and 
active amino acids for the metal and metal oxide nanopar-
ticles. These findings enhance our understanding of the 
interactions between metal and metal oxide nanoparticles 
and bacterial QS systems, offering valuable insights into 
their potential applications as anti-QS and anti-biofilm age
nts.

LasI is a homoserine lactone (HSL) synthesis protein 
in P. aeruginosa that catalyzes the production of 3-oxo-
C12-HSL. It shares significant sequence similarity with 
RhlI, another AHL synthase in P. aeruginosa, indicating 
potential functional parallels [62]. In our molecular docking 
analysis, we investigated the interactions of Ag, ZnO, and 
CuO nanoparticles with the LasI protein (Fig. 3). AgNPs 
were observed to engage with the amino acid Met 54 of 
LasI via electrostatic interactions, producing an interaction 
energy of − 0.21 kcal/mol. In contrast, ZnONPs demon-
strated hydrogen bonding with Ala175 and Glu163, along-
side hydrophobic interactions with His89, Phe162, Gly163, 
and Ala175 within the LasI active site, resulting in a binding 
energy of − 2.72 kcal/mol. Similarly, CuONPs exhibited a 
binding energy of − 1.85 kcal/mol, forming five hydrogen 
bonds with Leu87, Phe162, Gly163, Pro164 and Ala175 
within the LasI active site.

Table 1   Molecular docking results for metal and metal oxide nanoparticles and their interactions with quorum sensing proteins of P. aeruginosa 

Protein name Ligand H-bond Hydrophobic bond Binding 
energy (kcal/
mol)

Ki (mM)

LasI Ag – Met 54  − 0.21 696.14
ZnO Gly163 – Ala 175 His 89—Phe 162 – Gly163 – Ala 175  − 2.72 10.09
CuO Leu 87 – Phe 162 – Gly 163 – Pro 164 – Ala 

175
–  − 1.85 44.09

LasR Ag – Tyr 56 – Lys 34  − 0.15 770.33
ZnO Asp 65 – Ala 70 Glu 48 – Asp 65 – Ala 70  − 2.58 12.86
CuO Tyr 64—Asp 65– Tyr 69—Ala 70 –  − 1.63 63.85

RhlI Ag – Arg 71 – Glu 101 – Ser 103  − 0.19 720.04
ZnO Leu 88 – Gly 158 – Pro 159 – Ala 170 Leu 88 – Gly 158 –Ala 170  − 2.47 15.37
CuO Leu 88 – Gly 158 – Leu 168—Ala 170 –  − 1.68 58.72

RhlR Ag – Tyr 43 – Tyr 64  − 0.15 778.18
ZnO Tyr 64 Tyr 64  − 2.51 14.43
CuO Tyr 43 – Tyr 64 –  − 1.57 70.25

PqsA Ag – Gly 173 – Trp 363 –Arg 364  − 0.22 686.89
ZnO Gly 173 – Trp 363 – Arg 364 Asp 98 – Gly 173 – Trp 363 – Arg 364  − 3.83 1.65
CuO Gly 173 – Trp 363 – Arg 364 Asp 98  − 2.49 15.00

PqsR Ag – Ile 147 – Thr 148  − 0.19 729.83
ZnO Gln 194 – Ile 195 – Ser 196 – Ile 236 Gln 194 – Ile 195 – Ser 196 – Trp 234 – Ile 

236
 − 2.86 8.08

CuO Gln 194 – Ile 195 – Ile 236 –  − 1.93 38.59
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Our in silico docking analysis indicates that Ag, ZnO, 
and CuO nanoparticles may form complexes with the 
LasI protein, potentially competing with its native ligand, 
S-adenosyl-L-methionine (SAM). This interaction could 
inhibit the activation of quorum sensing-regulated proteins 
such as LasR, RhlR, RhlI, PqsA, and PqsR, thereby dis-
rupting quorum sensing signaling pathways. In addition 
to assessing the binding energies, we evaluated the inhi-
bition constants (Ki) of AgNPs, ZnONPs, and CuONPs 
with the LasI protein, to further elucidate their affinity. 
Interestingly, the Ki value for the LasI-ZnONPs complex 
(10.09 mM) was lower than those for the LasI-AgNPs 
(696.14 mM) and LasI-CuONPs (44.09 mM) complexes. 
This suggests that ZnO nanoparticles exhibit a higher affin-
ity for the LasI protein compared to AgNPs and CuONPs. 
Furthermore, our investigation extended to analyzing the 
binding energy of the LasI-ZnONPs complex, provid-
ing insights into the stability of this nanoparticle-protein 

interaction. Notably, the binding energy of the LasI-
ZnONPs complex (− 2.72  kcal/mol) was significantly 
higher than that of well-known quorum sensing inhibitors 
(QSIs) such as furanone C30 (− 2.39 kcal/mol) and the 
natural ligand gingerol (− 2.55 kcal/mol), as reported in 
seminal scientific studies [63, 64]. This pivotal finding 
strongly suggests that ZnO nanoparticles have the potential 
to inhibit AHL production, a critical step in disrupting 
quorum sensing mechanisms.

LasR, a key transcriptional activator regulating the 
expression of virulence-related genes in P. aeruginosa, is 
a crucial target for therapeutic interventions [65]. Notably, 
the Las system serves as the principal regulator of QS in 
P. aeruginosa, controlling both the Rhl and Pqs signaling 
pathways [66]. Our molecular docking analysis revealed that 
AgNPs interact with the LasR protein with a binding energy 
of − 0.15 kcal/mol, primarily involving the amino acid resi-
dues Tyr 56 and Lys 34 (Fig. 4). These residues overlap 

Fig. 3   Interaction profiles of 
LasI with AgNPs, ZnONPs, and 
CuONPs; green dashed lines 
indicate hydrogen bonds, while 
gray and red dashed lines repre-
sent electrostatic bonds
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with known binding sites of LasR inhibitors, indicating a 
potential competitive mechanism for AgNPs [67].

Further docking analysis revealed that ZnONPs bind to 
LasR with a binding energy of − 2.58 kcal/mol, interacting 
with key residues Glu48, Asp65, and Ala70, stabilized by 
hydrogen bonds with Asp65 and Ala70. Similarly, CuONPs 
exhibited a binding energy of − 1.63 kcal/mol, with inter-
actions primarily stabilized by hydrogen bonds involving 
Tyr64, Asp65, Tyr69, and Ala70. These results suggest that 
Ag, CuO, and ZnO nanoparticles may compete with the 
native ligand 3-O-C12-HSL, thereby downregulating LasR-
mediated virulence factor production [68].

To further evaluate the inhibitory potential of these 
nanoparticles, we determined their inhibitory constant (Ki) 
against LasR. The results indicated that the LasR-ZnONPs 
complex had a significantly lower Ki value (12.86 mM) 
compared with the LasR-AgNPs (770.33 mM) and LasR-
CuONPs (63.85 mM), highlighting the stronger binding 

affinity of ZnONPs to LasR protein. ZnONPs interacted 
with Ala70 in the same binding cavity where the natural 
ligand 3-oxo-C12-HSL binds [69, 70], further supporting the 
conclusion that ZnONPs are the most effective among the 
tested nanoparticles. Since the binding of 3-oxo-C12-HSL 
to LasR triggers the transcription of various virulence genes 
in P. aeruginosa [71], it is anticipated that ZnONPs could 
compete with 3-oxo-C12-HSL for binding to LasR, thereby 
reducing the expression of QS-controlled genes.

RhlI, the synthase responsible for producing the quo-
rum sensing molecule N-butyryl-L-homoserine lactone 
(C4-HSL), plays a pivotal role in regulating P. aeruginosa 
pathogenicity by binding to its receptor RhlR, as reported 
by Kumar et al. [48]. Our docking studies revealed that 
RhlI binds with AgNPs, exhibiting a binding energy 
of − 0.19 kcal/mol, with key interacting residues includ-
ing Arg71, Glu101, and Ser103. Docking analysis of RhlI 
with CuONPs revealed a binding energy of − 1.68 kcal/

Fig. 4   Interaction profiles of 
LasR with AgNPs, ZnONPs, 
and CuONPs as predicted by 
AutoDockTools; green dashed 
lines indicate hydrogen bonds, 
while gray and red dashed lines 
represent electrostatic bonds
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mol, supported by hydrogen bonds involving Leu88, 
Gly158, Leu168, and Ala170. In contrast, the docking 
of RhlI with ZnONPs exhibited a significantly stronger 
binding energy of − 2.47 kcal/mol, involving interaction 
with Leu88, Gly158, Pro159, and Ala170, with hydrogen 
bonds stabilizing the complex at Gly158, Pro159, and 
Ala170 (Fig. 5). Additionally, the Ki value for the RhlI-
ZnONPs complex (15.37 mM) was significantly lower than 
those for the RhlI-AgNPs (720.04 mM) and RhlI-CuONPs 
(58.72 mM) complexes (Table 1). This stronger binding 
and lower Ki value suggest that ZnO nanoparticles have 
a higher potential to interfere with RhlI function, possi-
bly disrupting quorum sensing and reducing P. aerugi-
nosa pathogenicity. In line with our findings, Saleh et al. 
demonstrated that ZnO nanoparticles significantly reduce 
the expression levels of the QS regulatory gene RhlI [72]. 
Moreover, our work highlights the importance of direct 
interactions between nanoparticles and QS proteins, which 

can lead to changes in their activity and subsequent effects 
on QS signaling pathways.

RhlR, the receptor for the AHL produced by the RhlI 
synthase, plays a crucial role in activating virulence genes in 
P. aeruginosa [73]. Upon binding with C4-HSL, RhlR trig-
gers the transcription of numerous virulence genes [74–77]. 
Our docking studies of RhlR with AgNPs, ZnONPs, and 
CuONPs revealed distinct interaction patterns and binding 
affinities (Fig. 6). The RhlR-AgNPs complex formed two 
electrostatic interactions with Tyr43 and Tyr64, resulting in 
a binding energy of − 0.15 kcal/mol. In contrast, the RhlR-
CuONPs complex exhibited a binding energy of − 1.68 kcal/
mol, stabilized primarily by hydrogen bonds involving Tyr43 
and Tyr64. Notably, the RhlR-ZnONPs complex showed the 
highest binding affinity with a binding energy of − 2.51 kcal/
mol, supported by a hydrogen bond with Tyr64.

Interestingly, all three nanoparticles, AgNPs, ZnONPs, 
and CuONPs were docked at Tyr64, which is located within 

Fig. 5   Interaction profiles of 
RhlI with AgNPs, ZnONPs, 
and CuONPs as predicted by 
AutoDockTools; green dashed 
lines indicate hydrogen bonds, 
while gray and red dashed lines 
represent electrostatic bonds
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the same binding cavity where RhlR’s, natural ligand, 
C4-HSL, binds, as previously reported [70, 78, 79]. This 
observation aligns with the crystallographic findings of 
Borgert et al. (2022), which demonstrated that C4-HSL 
interacts with the active site of RhlR, forming hydrogen 
bonds with Tyr64 [78]. Our docking studies suggest that 
ZnONPs, AgNPs, and CuONPs can occupy this critical site, 
potentially competing with C4-HSL for binding to RhlR. 
The binding potential of ZnONPs to RhlR was higher 
compared with AgNPs and CuONPs, as indicated by a sig-
nificantly lower Ki value for the RhlR-ZnONPs complex 
(14.43 mM) compared with the RhlR-AgNPs (778.18 mM) 
and RhlR-CuONPs (70.25 mM) complexes (Table 1). This 
suggests that ZnONPs may more effectively compete with 
C4-HSL for binding to RhlR, potentially interfering with 
quorum sensing at the protein level. These findings highlight 
the varying binding affinities and interaction mechanisms 

between RhlR and different nanoparticles, with ZnONPs 
demonstrating the strongest interaction and thus presenting 
potential as modulators of quorum sensing pathways.

In addition to the Las/Rhl system, the PQS (Pseu-
domonas quinolone signal) system is another key crucial 
quorum sensing system pathway in P. aeruginosa that play 
a significant role in biofilm formation. Disrupting this sys-
tem can be effective for controlling biofilm-related infections 
[80]. PqsA is a crucial enzyme involved in the production 
of PQS signaling molecules [81, 82], making it a promising 
target for developing therapies against multidrug-resistant 
P. aeruginosa [83].

Our molecular docking studies revealed that AgNPs 
interact with the amino acids Gly173, Trp363, and Arg364 
of PqsA through electrostatic interactions, with a bind-
ing energy of − 0.22 kcal/mol (Table 1). In contrast, the 
PqsA-ZnO nanoparticle complex showed a much stronger 

Fig. 6   Interaction profiles of 
RhlR with AgNPs, ZnONPs, 
and CuONPs as predicted by 
AutoDockTools; green dashed 
lines indicate hydrogen bonds, 
while gray and red dashed lines 
represent electrostatic bonds
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binding energy of − 3.83  kcal/mol, stabilized through 
hydrogen bonds involving Gly173, Trp363, and Arg364, 
as well as hydrophobic interactions with Asp98, Gly173, 
Trp363, and Arg364 at the active site of PqsA. Similarly, 
docking of PqsA with CuONPs resulted in binding energy 
of − 2.49 kcal/mol, with interactions stabilized by hydrogen 
bonds involving key residues Asp98, Gly173, Trp363, and 
Arg364 and additional hydrophobic interaction with Asp98 
(Fig. 7).

The PqsA-ZnONPs complex exhibited the highest affin-
ity among the tested nanoparticles, with a significantly 
lower Ki value (1.65 mM) compared with the PqsA-AgNPs 
(686.89 mM) and PqsA-CuONPs (15.00 mM) complexes 
(Table 1). This finding aligns with the study by M. Saleh 
et al. [72], which reported that ZnO nanoparticles reduce 
the expression of the pqsA gene at the transcriptional level 
before the PqsA protein is produced. However, our study 
highlights a complementary mechanism: We show that 

ZnONPs can directly bind to the PqsA protein, potentially 
inhibiting its function at the protein level. This distinction is 
important because while gene expression changes reduce the 
amount of PqsA produced, our results suggest that ZnONPs 
can also impair the activity of any PqsA that is already 
present. Since PqsA is critical for PQS signaling molecule 
production, targeting it at both the gene and protein levels 
could enhance strategies to disrupt PqsR-dependent gene 
regulation and biofilm formation in P. aeruginosa [81, 82].

PqsR, a key transcriptional regulator in P. aeruginosa, 
plays a crucial role in controlling the expression of virulence 
genes. It becomes activated upon binding to 2-heptyl-4-qui-
nolone (HHQ) and the Pseudomonas quinolone signal (PQS) 
[84]. PqsR regulates the polycistronic operon pqsABCDE, 
which contains essential genes for encoding the synthases 
involved in PQS and HHQ production [85].

Our docking studies demonstrate that PqsR interacts 
with AgNPs through two electrostatic bonds with the 

Fig. 7   Interaction profiles of 
PqsA with AgNPs, ZnONPs, 
and CuONPs as predicted by 
AutoDockTools; green dashed 
lines indicate hydrogen bonds, 
while gray and red dashed lines 
represent electrostatic bonds
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Ile147 and Thr148 (Fig. 8), resulting in a binding energy 
of − 0.19 kcal/mol. In contrast, ZnONPs showed a sig-
nificantly stronger interaction with PqsR, with a binding 
energy of − 2.86 kcal/mol, stabilized by hydrogen and 
hydrophobic bonds involving Gln194, Ile195, Ser196, 
Trp234, and Ile236. The PqsR-CuONPs complex exhibited 
a binding energy of − 1.93 kcal/mol, stabilized by hydro-
gen bonds with Gln194, Ile195, and Ile236.

ZnONPs displayed a superior binding affinity to PqsR 
compared with AgNPs and CuONPs, with a notably lower 
Ki (8.08 mM) than the PqsR-AgNPs (729.83 mM) and 
PqsR-CuONPs (38.59 mM) complexes (Table 1). ZnONPs 
occupy the binding region of the co-crystallized ligand 
3NH2-7Cl-C9QZN in PqsR, interacting with key amino 
acid residues Gln196, Ser236, and Ile236. These findings 
suggest that ZnONPs could competitively inhibit PqsR 

activation in P. aeruginosa by occupying the same bind-
ing pocket as other ligands [45].

Our study reveals the interactions between metal and 
metal oxide nanoparticles and the QS systems of P. aerugi-
nosa, identifying ZnONPs as the most effective inhibitors. 
In P. aeruginosa, amino acids such as arginine, ornithine, 
isoleucine, leucine, valine, phenylalanine, and tyrosine 
enhance biofilm formation while reducing swarming motil-
ity [86]. Additionally, Other studies have highlighted the role 
of aspartic acid, histidine, leucine, methionine, tryptophan, 
and tyrosine in biofilm assembly [87]. Our findings further 
show that ZnONPs interact with key amino acid residues, 
such as aspartic acid, tryptophan, and arginine (Table 1), 
within the active sites of QS signaling proteins.

Molecular docking results indicate that ZnONPs form 
strong hydrogen and hydrophobic bonds with the key QS 

Fig. 8   Interaction profiles of 
PqsR with AgNPs, ZnONPs, 
and CuONPs as predicted by 
AutoDockTools; green dashed 
lines indicate hydrogen bonds, 
while gray and red dashed lines 
represent electrostatic bonds
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proteins LasI, LasR, RhlI, RhlR, PqsA, and PqsR, with bind-
ing energies ranging from − 2.47 to − 3.83 kcal/mol, outper-
forming AgNPs and CuONPs. The location of AgNPs within 
the active sites differs slightly from that of ZnONPs and 
CuONPs. This difference arises from the molecular char-
acteristics of each nanoparticle. AgNPs, being metallic, 
primarily interact with proteins through hydrophobic con-
tacts, favoring non-polar regions. In contrast, ZnONPs and 
CuONPs, as metal oxides, engage more through hydrogen 
bonds and polar interactions, promoting interactions with 
charged and polar residues. This distinction significantly 
influences the type and location of attachment to each 
protein.

This strong binding affinity suggests that ZnONPs can 
effectively inhibit the synthesis of QS signaling molecules 
by binding to acyl-homoserine-lactone synthases (LasI, 
RhlI, PqsA) and disrupt their binding to regulatory proteins 
(LasR, RhlR, PqsR). This competitive binding mechanism 
impedes the normal signaling processes within P. aerugi-
nosa, leading to a reduction in its pathogenicity. Analysis of 
protein–ligand interactions suggests that ligands with high 
efficiency are generally enriched with hydrophobic interac-
tions [88], which may contribute to their enhanced stability 
and inhibitory potential [89].

ZnONPs exhibited superior binding affinities, as evi-
denced by their lower inhibition constants, compared with 
AgNPs and CuONPs. This suggests that ZnONPs can effec-
tively compete with native ligands-such as S-adenosyl-L-
methionine, 3O-C12-HSL, C4-HSL, and PQS-disrupting 
QS signaling pathways. Notably, to our knowledge, this is 
the first in silico investigation of the interaction between 
ZnONPs and PqsA and PqsR proteins (Table 1).

Our docking studies revealed that ZnONPs showed 
the strongest affinity for PqsA, with a binding energy 
of − 3.83 kcal/mol, compared with CuONPs and AgNPs. 
This indicates that ZnONPs might effectively block the 
binding pocket of PqsA, potentially inhibiting the entry of 
natural ligands and, thus, its activation. Previous research 
has shown that the pqs system plays a crucial role in regu-
lating pyocyanin production, suggesting that ZnONPs could 
interfere with this process. Furthermore, the lower Ki for the 
PqsA-ZnONPs complex suggests greater stability compared 
to other nanoparticle complexes.

Interestingly, ZnONPs do not share structural similari-
ties with traditional AHLs and SAM molecules involved in 
QS, presenting a novel method for inhibiting QS-controlled 
genes and offering a potential treatment for P. aeruginosa 
infections. Additionally, due to their smaller size and high 
surface area-to-volume ratio, nanoparticles like ZnONPs 
are particularly effective in penetrating microbial cells and 
enhancing drug delivery [90]. The stability and favorable 
binding profile of the PqsA-ZnONPs complex were further 
supported by molecular dynamics simulations.

3.3 � Dynamic Simulation Studies

Molecular dynamics (MD) simulation is crucial for assess-
ing the stability of the receptor-ligand complex [91]. In 
this study, the protein analyzed is the cell communica-
tion protein PqsA from P. aeruginosa, represented by the 
crystalline structure with the PDB code 5OE3. The PqsA 
protein showed strong interaction energies with silver, 
zinc oxide, and copper oxide nanoparticles. The simula-
tion specifically focused on the PqsA-ZnONPs complex, 
revealing it to be the most stable among the three types of 
nanoparticles studied. The stability of the protein structure 
and structural changes were monitored by calculating the 
RMSD during the simulation.

After an initial adjustment period of the ligand within 
the protein cavity, the RMSD of the ZnONPs remained 
stable, ranging from 2.5 to 4 Å throughout the simula-
tion. Figure 9a illustrates the RMSD profiles of the com-
plex formed by the PqsA protein from P. aeruginosa and 
ZnONPs, showing a slight variation but consistent stabil-
ity over time. The nanoparticle underwent more fluctua-
tions due to the large active site cavity, with fluctuations 
between 3 and 4 Å.

The movement of amino acids within the active site was 
assessed by calculating the RMSF of the macromolecule’s 
Cα atoms, which characterize the fluctuations of amino 
acids relative to their initial positions. The RMSF values 
for residues are plotted on the y-axis, with residue numbers 
displayed on the x-axis. The majority of residues in the mac-
romolecular backbone exhibited RMSF values ranging from 
0.5 to 2.5 Å, which is considered acceptable for residues 
within an active site. The ZnONPs might be interacting with 
PqsA in more flexible regions, allowing them to adapt their 
shapes to each other. It is important to note that the high-
est RMSF value corresponds to a greater degree of move-
ment, while the lowest RMSF value indicates a more stable 
structure with limited structural fluctuations during the MD 
simulation [92, 93]. The RMSF plot for the Cα backbones 
of the receptor macromolecule generated by the 100 ns MD 
simulation is shown in Fig. 9d.

During the simulation process, a significant portion of 
the macromolecular secondary structures (42.11%) were 
conserved, with α-helices comprising 22.78% and β-sheets 
comprising 19.33%. Throughout the MD simulation, the 
stability of the receptor-ligand complex was upheld by the 
presence of hydrogen bonds, hydrophobic contacts, and 
ionic interactions. ZnONPs were found to interact with spe-
cific amino acid residues of the quorum sensing protein of 
P. aeruginosa, including Trp363, Arg364, and Gln369 via 
hydrogen bonds, and Asp98, Pro171, Gly173, and Ser366 
via water bridges. The details of the interactions observed 
between ZnONPs and the PqsA protein of P. aeruginosa are 
demonstrated in Fig. 9b.
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The dominant interaction is hydrophobic, suggesting the 
protein and ZnONPs bind through nonpolar forces. Hydro-
gen bonding is also observed to a lesser extent, with few 
ionic interactions and water bridges between the protein and 
nanoparticle. Figure 9c illustrates the timeline evolution of 
ligand–protein contacts during the 100 ns simulation period. 
The intensity of the band color positively correlates with the 
number of mediated contacts. Arg364 consistently exhib-
its the highest number of contacts, suggesting its signifi-
cant role in the stability and interactions within the system. 
The results of the molecular dynamics simulation validate 
the results obtained by molecular docking, indicating that 
ZnONPs are stabilized by Asp98, Gly173, Trp363, and 
Arg364 (Table 1).

3.4 � Conclusions

In this study, we demonstrated the anti-QS activity of 
metal and metal oxide nanoparticles, focusing on their 
molecular mechanisms against the superbug P. aeruginosa. 
Docking results showed that ZnONPs consistently bind to 
the active sites of QS regulators LasI/R, RhlI/R, and PqsA/
PqsR, indicating their potential as antivirulence agents 
targeting QS signaling in P. aeruginosa. Specifically, the 

PqsA-ZnONPs complex exhibited strong predicted binding 
affinities, suggesting a significant role in disrupting the 
QS system in P. aeruginosa. Molecular dynamic simula-
tions confirmed the stability of ZnONPs binding to the 
PqsA active site. The potential mechanisms of their anti-
QS activity may include the inhibition of signal molecule 
synthesis and the blockage of receptor proteins. These 
findings highlight the promising potential of ZnONPs as 
effective inhibitors of virulence factors in Gram-negative 
bacteria, paving the way for their development as powerful 
agents against QS and biofilm formation.
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Fig. 9   Analysis of ligand–pro-
tein interactions over simulation 
time. a Root-mean-square devi-
ations (RMSD) for backbone 
atoms and ligands. b Protein–
ligand interaction profile for 
PqsA in complex with ZnONPs. 
c Timeline representation of 
ligand–protein contacts: the top 
panel shows the total number 
of contacts, while the heat map 
depicts the interacting amino 
acid residues. d Root-mean-
square fluctuation (RMSF) 
calculations of protein–ligand 
complexes throughout the 100 
ns simulation
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