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ABSTRACT
Coumarins are a highly privileged scaffold in medicinal chemistry. It is present in many natural prod-
ucts and is reported to display various pharmacological properties. A large plethora of compounds
based on the coumarin ring system have been synthesized and were found to possess biological activ-
ities such as anticonvulsant, antiviral, anti-inflammatory, antibacterial, antioxidant as well as neuropro-
tective properties. Despite the wide activity spectrum of coumarins, its naturally occurring derivatives
are yet to be investigated in detail. In the current study, a chemical library was created to assemble all
chemical information related to naturally occurring coumarins from the literature. Additionally, a multi-
stage virtual screening combining QSAR modeling, molecular docking, and ADMET prediction was con-
ducted against monoamine oxidase B and acetylcholinesterase, two relevant targets known for their
neuroprotective properties and ‘disease-modifying’ potential in Parkinson’s and Alzheimer’s disease.
Our findings revealed ten coumarin derivatives that may act as dual-target drugs against MAO-B and
AChE. Two coumarin candidates were selected from the molecular docking study: CDB0738 and
CDB0046 displayed favorable interactions for both proteins as well as suitable ADMET profiles. The sta-
bility of the selected coumarins was assessed through 100ns molecular dynamics simulations which
revealed promising stability through key molecular interactions for CDB0738 to act as dual inhibitor of
MAO-B and AChE. However, experimental studies are necessary to evaluate the bioactivity of the pro-
posed candidate. The current results may generate an increasing interest in bioprospecting naturally
occurring coumarins as potential candidates against relevant macromolecular targets by encouraging
virtual screening studies against our chemical library.
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1. Introduction

Neurodegenerative disorders such as Alzheimer’s and
Parkinson’s disease remains the most frequent neurological
diseases in the world (Barnham et al., 2004).
Neurodegenerative diseases are characterized by the pro-
gressive loss of neuronal cells in the brain because of differ-
ent factors contributing to its progression such as the
deposition of amyloid fibrils, oxidative stress, mitochondrial
dysfunction, and metal accumulation (Dugger & Dickson,
2017). Parkinson’s disease (PD) is the second most frequent
neurological disorder in the world that is described by the
loss of dopaminergic neurons in the midbrain causing striatal
dopamine deficiency (Poewe et al., 2017). It is estimated to
affect six million people worldwide with an increasing preva-
lence expected to reach 2- to 3-fold by 2030 (Lee & Gilbert,
2016; Poewe & Mahlknecht, 2020). The most frequent motor
symptoms are dyskinesia, shaking, and difficulty moving (Xia
& Mao, 2012). Other non-motor symptoms may appear ear-
lier such as depression, insomnia, and constipation (National
Institute for Clinical Excellence, 2006). There is accumulating
evidence indicating that oxidative damage and mitochondrial

imbalance contribute to the cascade of events leading to the
degeneration of the dopaminergic neurons (Dias et al., 2013).
Thus, there is an increasing need for novel ‘disease-modify-
ing’ therapies (Kalia et al., 2015). Current therapeutic strat-
egies for PD treatment include L-DOPA therapy which
remains the gold standard for controlling PD motor
symptoms, other dopaminergic treatments include dopamine
agonists, monoamine oxidase B (MAO-B) inhibitors and cat-
echol-O-methyl transferase (COMT) inhibitors (Kaakkola, 2010;
Lang & Marras, 2014). Non-dopaminergic treatments have
also been proven to be effective for alleviating PD symptoms
and slowing down neuronal damage such as adenosine A2A

receptor and N-methyl-D-aspartate (NMDA) receptor antago-
nists (Bara-Jimenez et al., 2003; Bibbiani et al., 2003). While
acetylcholinesterase (AChE) inhibitors are mainly used to
treat Alzheimer’s disease, a clinical study has shown that
AChE inhibitors may be efficacious for improving cognitive
impairment and dementia in PD patients (Van Laar et al.,
2011). Another recent meta-analysis included randomized
controlled trials to investigate the effects of AChE inhibitors
on PD’s major symptoms, it was found that rivastigmine was
effective for PD dementia (Chen et al., 2021). There’s a great
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deal of literature outlining the dual-activity of coumarin
derivatives against MAO-B and AChE. Br€uhlmann et al. (2001)
conducted an experimental study of a set of 17 coumarins
with known inhibition against MAO enzymes against AChE,
all the compounds inhibited AChE with values in the micro-
molar range (3� 100lM) (Br€uhlmann et al., 2001). Another
study reported the structural requirements of coumarins as
dual inhibitors of MAO-B and AChE through molecular dock-
ing and structure-activity relationship analysis (Yusufzai et al.,
2018). More recently, Ekstr€om et al. (2022) synthetized a ser-
ies of coumarins against MAO-B and AChE, the most potent
compounds were bearing the N-methylbenzylamine moiety
at position C7 and the N-benzylpiperidine moiety that is
found in Donepezil, a reference AChE inhibitor that is pre-
scribed to AD patients (Ekstr€om et al., 2022).

Structural analysis of the crystallographic structure of
MAO-B (PDB ID: 2V61) revealed that the latter is a dimer
formed by a globular domain attached to the membrane
through a C-terminal helix (Binda et al., 2007). The substrate
fixing domain, located near the FAD cofactor binding
domain, contains the active site of the enzyme. This active
site is comprised of two cavities: an entrance cavity covered
by the residues Pro-102, Pro-104, Leu164, Phe-168, Leu-171,
and Ile-198, and a substrate cavity formed by Tyr-60, Cys-
172, Tyr-188, Gln-206, Phe-343, Tyr-398, and Tyr-435
(Boulaamane et al., 2023). The residues Ile-199 and Tyr-326
act as ‘gating’ residues for the substrate cavity, playing a cru-
cial role in determining substrate and inhibitor specificity for
MAO-B (Milczek et al., 2011).

Meanwhile, the analysis of AChE crystal structure (PDB ID:
4EY7) revealed the presence of a dimer like MAO-B. The
binding cavity is divided into the peripheral anionic site
(PAS) formed by the residues: Trp-286, Tyr-337 and Phe-338;
and the catalytic anionic site (CAS) which consists of the resi-
dues: Trp-86, Glu-202, Tyr-337 and Phe-338 (Pourshojaei
et al., 2019). A study conducted with single and multiple
site-specific mutants of mouse AChE revealed three distinct
regions that confer selectivity for AChE inhibitors over butyr-
ylcholinesterase (BChE). The first domain is defined by the
acyl pocket dimensions, where the side chains of Phe-295
and Phe-297 primarily outline the acyl pocket dimensions. By
replacing these phenylalanine side chains with the aliphatic
residues found in BChE, the enzyme can catalyze larger sub-
strates and accommodate selective BChE inhibitors. The
second domain is found near the lip of the active center
gorge defined by two tyrosines, Tyr-72 and Tyr-124, and by
Trp-286. This region is crucial for the selectivity of bisquater-
nary inhibitors, such as BW284C51. The third domain is
responsible for choline binding and defined by Tyr-337 [23].
The 3D structures of MAO-B and AChE along with their
respective active sites are shown in Figure 1.

Despite the accumulating studies reporting the multi-tar-
get potential of synthetic drugs, the use of natural products
against multiple therapeutic targets is yet to be investigated
in detail (Lu et al., 2012). Numerous studies have reported
the potency of natural products from medicinal plants, fruits,
and vegetables to act as antiparkinsonian agents such as
alkaloids, glycosides, flavonoids, caffeine, xanthones,

catechins and coumarins which demonstrated neuroprotec-
tive properties associated with strong antioxidant and mono-
amine oxidase inhibitory activity (Carradori et al., 2014;
Khanam et al., 2021; Singla et al., 2021).

Coumarins are phenolic compounds formed by fused ben-
zene and a-pyrone rings (Garrard, 2014). Benzopyrones such
as coumarins and flavonoids are present in many vegetables,
fruit, seeds, nuts, coffee, tea, and wine (Lacy & O’Kennedy,
2004). Thus, dietary exposure to benzopyrones is consider-
able, which explains why extensive research into their
pharmacological and therapeutic properties is underway over
many years (Venugopala et al., 2013). A wide variety of
coumarin derivatives have shown anticonvulsant, antiviral,
anti-inflammatory, antibacterial, antioxidant and monoamine
oxidase inhibitory activities (Stefanachi et al., 2018).

The growing volume of biomedical data in chemistry and
biology requires development of new methods and
approaches for their analysis (Tetko & Engkvist, 2020). In sil-
ico and data-driven approaches are much more time and
cost effective compared to traditional experimental
approaches (Zhao et al., 2020). They can rapidly screen large
chemical libraries to identify promising leads (Pasrija et al.,
2022). In fact, chemical libraries are essential databases for
virtual drug screening. They consist of vast collections of
chemical compounds with diverse structures and properties,
allowing scientists to explore a wide range of potential drug
candidates (Fukunishi & Lintuluoto, 2010). Furthermore,
in silico methods allow for the generation of targeted libra-
ries that focus on specific biological targets, chemical classes,
or geographical regions. An illustrative example is the
Benzylisoquinoline Alkaloids database (BIAdb), which encom-
passes over 800 plant-derived compounds of this chemical
class enabling users to explore and obtain comprehensive
information on these compounds (Singla et al., 2010).

Herein, we aimed to construct a chemical library of all
available naturally occurring coumarins with their natural
sources from which they were isolated to allow users to
identify potential lead compounds and their source prior to
their synthesis through high-throughput virtual screening.
Furthermore, the chemical library was subject to a multi-
stage virtual screening using quantitative structure-activity
relationships (QSAR) models, molecular docking and ADMET
evaluation to explore the potency of natural coumarins to
act as dual inhibitors against MAO-B and AChE. Finally, the
lead compounds were subject to 100 ns molecular dynamics
simulations to further assess their stability over time.

2. Materials and methods

2.1. Data collection and chemical library design

PubMed search engine (https://pubmed.ncbi.nlm.nih.gov/)
was employed to retrieve the available literature reporting
the chemical data on coumarin containing compounds iden-
tified from natural sources using ‘natural coumarins’ as a
search query. Our search revealed three book sections and
one review article published in Progress in the Chemistry of
Organic Natural Products in 1952, 2002, and 2017 and
Journal of Pharmaceutical Sciences in 1964 respectively
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(Dean, 1952; Murray, 2002; Sarker & Nahar, 2017; Soine,
1964). The first step consisted of extracting the compound’s
names, chemical class, and natural sources. Subsequently, we
searched the PubChem database to retrieve the PubChem
IDs and chemical structures of all the compounds in SMILES
format. OSIRIS DataWarrior software was used to generate
unique chemical identifiers InChl Keys for all the molecules
(Sander et al., 2015). Duplicate compounds were removed
resulting in 905 unique natural coumarins. Furthermore,
physicochemical properties such as lipophilicity, molecular
weight, water solubility, number of hydrogen bond donors/
acceptors, rotatable bonds, and polar surface area were com-
puted as shown in Figure 2. All chemical information of the
compounds can be found in CoumarinDB (https://yboulaa-
mane.github.io/CoumarinDB/).

2.2. QSAR modeling

From ChEMBL database (https://www.ebi.ac.uk/chembl/), we
retrieved two datasets containing chemical structures that
were classified according to their calculated activity,

including 5066 MAO-B inhibitors and 8846 AChE inhibitors
with reported half maximal inhibitory concentration (IC50)
values (Mendez et al., 2019). The datasets were manually
curated, duplicate compounds were removed when multiple
bioactivity values were reported for a given compound by
calculating the mean value of the ’Standard Value’ column in
the pandas DataFrame grouped by the ’Molecule ChEMBL ID’
column. The resulting mean values are added to a new col-
umn in the DataFrame called ’mean_value’. Thereafter, the
DataFrame.drop_duplicates function included in the Pandas
library (McKinney, 2011) was used to identify and remove
duplicate rows in the dataset based on the values in the
’Molecule ChEMBL ID’ column to keep only one occurrence.

Logarithmic transformation was applied to all the activity
values to better determine the potency of the compounds
(Burggraaff et al., 2020; Tarasova et al., 2015). The workflow
of QSAR modeling is shown in Figure 3.

The datasets were then converted to SMILES format,
RDKit cheminformatics software was used to generate
molecular descriptors using Morgan fingerprints (Ding et al.,
2021; Landrum, 2013). The IC50 values were converted to

Figure 1. (1A) Crystal structure of MAO-B (PDB ID: 2V61) in complex with 7-(3- chlorobenzyloxy)-4-(methylamino)methyl-coumarin. (2A) Active site residues of
MAO-B. (1B) Crystal structure of AChE (PDB ID: 4EY7) in complex with Donepezil. (2B) Active residues of the peripheral anionic site (PAS) and the catalytic anionic
site (CAS) of AChE.
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pIC50 for ease of handling. The dataset was split into a 3:1:1
ratio of training, testing and validation sets. The number of
molecules in each of them is listed in Table 1.

Machine learning algorithms like multiple linear regression
(MLR), random forest (RF), decision trees (DT), support vector

regression (SVR), AdaBoost and extreme gradient boosting
(XGB) were used for building the model (Wu et al., 2021).
These models were built with all the hyperparameters set to
default and were assessed using validation metrics such as
the coefficient of determination (R2), mean squared error

Figure 2. Chemical library construction and curation of CoumarinDB.

Figure 3. QSAR workflow for modelling the bioactivity prediction of MAO-B and AChE.

Table 1. Distribution of the molecules in the training, testing and validation dataset.

Dataset Train set Test set Validation set Total dataset

Number of Molecules in MAO-B dataset 2526 842 843 4211
Number of Molecules in AChE dataset 2618 873 873 4363
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(MSE), mean absolute error (MAE) and root mean squared
error (RMSE). The QSAR workflow is illustrated represented in
Figure 3.

2.3. Preparation of ligand structures

The designed library of coumarins was found to contain
mostly oxygenated and deoxygenated coumarins as shown
in Figure 4A. Primary filtration was conducted based on
Lipinski’s rule of five. 706 out of 905 (78%) molecules were
retained for the present study as drug-like compounds
(Figure 4B). OSIRIS DataWarrior cheminformatics program
was used to generate an SDF file for all the ligands (Sander
et al., 2015). Thereafter, the OpenBabel toolbox was used to
split the compounds and optimize the chemical structures
using MMFF94 force field (Halgren, 1996; O’Boyle et al.,
2011). Partial charges and atom types were computed for
the molecular docking study.

2.4. Molecular docking

Crystallographic structure of MAO-B (PDB ID: 2V61, resolution
¼ 1.7 Å) in complex with a coumarin derivative, 7-(3- chloro-
benzyloxy)-4-(methylamino) methyl-coumarin (C18) was
retrieved from the RCSB PDB (https://www.rcsb.org/) (Binda
et al., 2007). Alternatively, crystal structure of AChE (PDB ID:
4EY7, resolution ¼ 2.3 Å) in complex with Donepezil (E20)
was selected for the molecular docking (Cheung et al., 2012).
Native ligands and crystal water molecules were removed to
make computations easier and clear the binding pocket of

possible water molecules that would distort the pose search.
Chain B was removed from both protein dimers and only
one chain was kept for the molecular docking along with
the FAD cofactor in MAO-B as it plays an important role in
the proper functioning of the enzyme in catalyzing the
deamination of monoamines (Edmondson & Newton-Vinson,
2001). Residues with missing atoms were fixed using the
CHARMM-GUI web server (Jo et al., 2008). Polar hydrogen
and Kollman charges were added using AutoDockTools
(Huey & Morris, 2008). Finally, the native ligands were used
to define the grid box parameters to cover the entire bind-
ing sites residues. The grid box was generated largely
enough to fit all the active site residues of MAO-B and AChE
(24� 24� 24Å) in x, y and z directions, respectively. The grid
box was placed in a way to cover both cavities in the
selected targets and to allow larger molecules to dock prop-
erly (51.2� 155.5� 28.7 Å and �14.1 � �43.8� 27.7 Å for
MAO-B and AChE respectively). Molecular docking was per-
formed using AutoDock Vina with an exhaustivness ¼ 8 and
num_modes ¼ 10 (representing 10 conformations) (Trott &
Olson, 2010).

2.5. ADME/tox prediction

Forty percent of drug candidates fail in clinical trials due to
unfavorable pharmacokinetic properties (Lin et al., 2003).
In silico open access tools for predicting Absorption,
Distribution, Metabolism, Excretion and Toxicity (ADMET)
parameters have emerged as a cost-efficient approach in the
early phases of drug development (Gola et al., 2006). The
pharmacokinetics and toxicity parameters for the selected

Figure 4. (A) Chemical class distribution of naturally occurring coumarins. (B) Percentage of compounds in the recommended range for each physicochemical
parameter of the rule of five.
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coumarins such as water solubility, intestinal absorption,
blood-brain barrier permeability, drug-drug interactions,
Ames toxicity and hepatotoxicity were computed using
pkCSM online calculation tool (http://biosig.unimelb.edu.au/
pkcsm/) (Pires et al., 2015).

2.6. Molecular dynamics workflow

Two compounds which demonstrated great affinity towards
MAO-B and AChE as well as great pharmacokinetics proper-
ties were selected from the molecular docking study to
perform MD simulations to study the stability of the protein-
ligand complexes over time. Desmond module of
Schr€odinger’s suite (2020-3) was used to run 100 ns MD
simulation (Bowers et al., 2006). The water-soaked solvated
system was created in Desmond using the System Builder
panel. OPLS2005 force field was selected, and Single Point
Charge (SPC) was used as a solvent model with a 10 Å ortho-
rhombic box for both proteins (Shivakumar et al., 2010). The
system was neutralized by randomly adding enough coun-
ter-ions (Naþ and Cl�) and isosmotic state was maintained
by adding 0.15M NaCl. The solvated model system was sub-
jected to energy minimization using OPLS2005 force field
parameters as the default protocol associated with Desmond
(Boulaamane et al., 2023). Then, the system was equilibrated
throughout the simulation time via NPT ensemble at a
constant 300 K temperature and 1 atm pressure using the
Nose-Hoover thermostat algorithm and Martyna-Tobias-Klein
barostat algorithm, respectively (Melchionna et al., 1993;
M€oller et al., 1992). A total of 100 ns simulations were carried
out, during which 1000 frames were recorded. Finally, MD
simulation trajectory was analyzed using the Simulation
Interaction Diagram (SID) tool (Katari et al., 2016).

3. Results and discussion

3.1. QSAR models validation

The performance of the generated machine learning models
is presented in Table 2. The MLR algorithm performed the
worst of all on the MAO-B dataset with a very low value
(0.19) and on the AChE dataset with a negative R2 and a cor-
responding high error rate. AdaBoost performed better than
MLR on both the datasets, however R2 was still below 0.5,
and MSE value was high. A better performance was observed
by the SVR, XGB and RF algorithm with an R2 value of 0.59,
0.60, and 0.61 respectively, on the MAO-B dataset. Moreover,
a better metric was obtained using these algorithms on the

AChE dataset. However, the best model amongst all was RF
with an R2 value of 0.72 and MSE of 0.65, for the MAO-B
dataset and for the AChE dataset, it was SVR with an R2

value of 0.70 and MSE of 1.01.
Since the best of all the algorithms used was RF for the

MAO-B dataset and SVR for the AChE dataset, the hyperpara-
meters were set to be optimized using the GridSearchCV
function in Scikit-Learn. The algorithm was extensively
searched using the RepeatedKFold, where number of folds
was set to 10 with 3 repeats and with parameters as pre-
sented in Table 3.

The best model of all the parameters for the SVR was
found to be with kernel: rbf, C:3, tol: 1e-0.5, gamma: ‘scale’
and degree: 3. The model was improved and an r2 value of
0.74 and MSE of 0.86 was obtained. For the MAO-B dataset,
the best RF parameters were found to be at n_estimators ¼
800, min_samples_split ¼ 5, min_samples_leaf ¼ 1, max_fea-
tures ¼ ’sqrt’, max_depth ¼ 90, bootstrap¼ False. The model
was found to show an r2 value of 0.65 and MSE of 0.58.
These models were also applied to the validation set (for
their respective datasets). The evaluation metrics for the test
and validation set are given in Table 4.

To ascertain that the evaluation metrics obtained were
not obtained by-chance correlation, a y-scrambling was per-
formed for five times, where the associated pIC50 values for
the molecules in the training set were jumbled, the model
was ‘fit’ using them and predicted for the test set. The goal
was to check if the model performs worse, indicating that
there is no chance correlation in the model. The results are
presented in Table 5. All the 5 models generated performed
poorly, with high error metrics and a negative correlation
value, thereby indicating that the model used here is robust.

The models with the best hyperparameters of RF and SVR
algorithm were applied to the dataset of the naturally occur-
ring coumarins (having 706 molecules) to identify potential
leads for biological evaluation. The top molecules are pre-
sented in Figure 5.

3.2. Molecular docking results

The molecular docking protocol implemented in AutoDock
Vina was validated by redocking the crystal ligands of MAO-
B and AChE against their respective binding sites (Mateev
et al., 2022; Trott & Olson, 2010). Co-crystallized ligands were
downloaded from PubChem database and prepared using

Table 2. The validation metrics of the algorithms used at default
hyperparameters.

Algorithm

MAO-B Dataset AChE Dataset

R2 MSE MAE RMSE R2 MSE MAE RMSE

MLR 0.19 2.96 4.68 4.54 �0.24 10.3 2.13 3.21
RF 0.72 0.65 0.58 0.81 0.67 1.11 0.70 1.05
DT 0.30 1.14 0.71 1.07 0.52 1.58 0.77 1.26
SVR 0.59 0.68 0.59 0.82 0.70 1.01 0.67 1.00
AdaBoost 0.20 1.32 0.95 1.15 0.34 2.19 1.27 1.48
XGB 0.60 0.65 0.58 0.81 0.69 1.01 0.69 1.01

Table 3. The grid parameters of SVR algorithm used in GridSearchCV�.
Dataset Hyperparameter Values

MAO-B n_estimators 200–2000, step ¼ 10
max_features ‘auto,’ ‘sqrt’
max_depth 10–110, step ¼ 11
min_sample_split 2, 5, 10
min_sample_leaf 1, 2, 4
bootstrap ‘True,’ ‘False’

AChE kernel ‘linear,’ ‘rbf’, ‘sigmoid’, ‘poly’
tolerance 1e-3, 1e-4, 1e-5, 1e-6
C 1, 1.5, 2, 2.5, 3
degree 1, 2, 3, 4, 5, 6
gamma ‘scale,’ ‘auto’

�The acronyms for the various parameters are as mentioned in the scikit-learn
documentation.
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the same parameters for the tested ligands (Kim et al., 2019).
The root-mean-square deviation (RMSD) was calculated by
superposing both docked and native ligands, the latter was
used as a reference. The results yielded values of 0.87 Å for
MAO-B and 0.98 Å for AChE demonstrating a good accuracy
of the docking program (Figure 6).

The top scoring, common molecules predicted by both
the datasets were then docked into the active site of MAO-B
and AChE using AutoDock Vina (Trott & Olson, 2010). The
best conformations of the docked compounds were selected
based on their binding affinity and their similarity to the co-
crystallized ligands by means of superposition. Hydrogen
bonds and nearby hydrophobic interactions were visualized
using DS Visualizer (Biovia, 2017). Docking scores and hydro-
gen bonds of the best candidates along with the reference
inhibitors are displayed in Table 6.

Molecular interactions analysis was conducted for the two
highest-scoring candidates (Figures 7 and 8). CDB0738
revealed the presence of a hydrogen bond involving Gln-206
which is known to act as a hydrogen bond acceptor for

most MAO-B inhibitors (Boulaamane et al., 2022). Another
hydrogen bond was found to involve Tyr-435 of the aromatic
cage. A p-p stacking interaction was observed between the
pyrone ring of the coumarin scaffold and Tyr-326, a key aro-
matic residue, suggesting potential selectivity for MAO-B
over MAO-A where this residue is replaced by the aliphatic
amino acid, Ile-335. Meanwhile, CDB0046 formed a hydrogen
bond with Pro-102, a rigid residue located at the extremity
of the entrance cavity of the MAO-B binding pocket. This
interaction may be attributed to the larger size of the com-
pound, potentially conferring selectivity for MAO-B over
MAO-A, as the latter has a smaller cavity and cannot accom-
modate bulkier compounds. An additional hydrogen bond
was observed between CDB0046 and Cys-172, a residue
located in the catalytic site of MAO-B. It’s important to note
that this residue is not conserved in both isoenzymes. In
MAO-A, Cys-172 is replaced by Asn-171, and Cys-323 is in
the opposite side of the binding pocket, further adding to
the potential selectivity of the studied coumarin (Di Paolo
et al., 2019).

On the other hand, CDB0738 formed a hydrogen bond
with Glu-202 located in the choline binding site of AChE.
This interaction plays an essential role in maintaining the
critical hydrogen bond network required to support the cata-
lytic triad of AChE (Wang et al., 2022). CDB0738 also exhib-
ited two additional p-p stacking interactions involving the
aromatic amino acids Trp-86 and Tyr-341 known for stabiliz-
ing AChE inhibitors (Ranjan et al., 2015). In contrast,
CDB0046 formed four hydrogen bonds with Tyr-72, a residue
known to be critical for the selectivity of bisquaternary inhib-
itors (Radic et al., 1993). The 3-hydroxy-3-(hydroxymethyl)-5-

Table 4. The evaluation metrics using the best model generated from hyper-
parameter tuning.

Dataset Algorithm R2 MSE MAE RMSE

MAO-B Test Set 0.78 0.58 0.56 0.76
Validation Set 0.75 0.60 0.58 0.78

AChE Test Set 0.74 0.86 0.62 0.93
Validation Set 0.76 0.79 0.59 0.89

Table 5. The highest values obtained for r2 and MSE for the y-scrambled
dataset.

Dataset
y-scrambled
models R2 MSE MAE RMSE

MAO-B
(Using the RF with
best parameters)

Y_1 �0.25 2.05 1.15 1.43
Y_2 �0.19 1.97 1.11 1.40
Y_3 �0.16 1.91 1.11 1.38
Y_4 �0.08 1.78 1.07 1.33
Y_5 �0.15 1.90 1.10 1.38

AChE
(Using the SVR with
best parameters)

Y_1 �0.14 3.76 1.62 1.94
Y_2 �0.14 3.76 1.60 1.94
Y_3 �0.25 4.12 1.69 2.03
Y_4 �0.19 3.94 1.62 1.98
Y_5 �0.24 4.08 1.65 2.02

Figure 5. Top ranked molecules with predicted pIC50 > 6 by the RF and SVR models created using MAO-B and AChE respectively.

Figure 6. RMSD values and Superimposition of native co-crystallized (cyan
color) and docked ligands (chartreuse color) for MAO-B (A) and AChE (B).
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methyloxolan-2-one moiety linked to the coumarin scaffold
was responsible for the other observed hydrogen bonds
involving Gly-121, Glu-202, and Ser-203. Moreover, the cou-
marin scaffold formed two p-p stacking interactions with
Trp-286 located in the PAS of AChE. Trp-286 is thought to
play a crucial role in the allosteric modulation of human
AChE activity by binding to ligands at the entrance of the
active site gorge. Mutations of Trp-286 have been shown to
result in a significant decrease in binding affinity of PAS
ligands, indicating its importance in the ligand recognition
(Barak et al., 1994).

3.3. ADME/tox prediction results

ADME and toxicity prediction results for the selected coumar-
ins are shown in Table 7. pkCSM predicted water solubility
show that all the compounds have values ranging between
�3.2 and �5.5 which are within the recommended range
(–6.5 to 0.5) where 95% of similar values for known drugs
fall inside (Ntie-Kang, 2013). Predicted intestinal absorption
shows that all the selected coumarins have great oral
absorption and thus greater bioavailability. Moreover, all the
drugs displayed good blood-brain barrier permeability values
which is a necessary parameter to consider for developing

Table 6. Molecular docking results of the selected naturally occurring coumarins against MAO-B and AChE.

Compound Natural source

Docking score (kcal/mol) Hydrogen bonds p-p interactions

MAO-B AChE MAO-B AChE MAO-B AChE

C18a — �9.8 �10.5 Cys-172 Ser-125
His-447

Tyr-326
Tyr-398

Trp-286
Phe-338
Tyr-341

E20b — �7.9 �11.3 — Phe-295 Phe-343 Trp-86
Tyr-341

CDB0738 Edgeworthia chrysantha �12.7 �12.4 Gln-206
Tyr-435

Glu-202 Tyr-326
Tyr-398

Trp-86
Tyr-341

CDB0046 Clausena excavata �9.7 �11.1 Pro-102
Cys-172

Tyr-72
Gly-121
Glu-202
Ser-203

Tyr-398
Tyr-435

Trp-286

CDB0042 Clausena excavata �9.9 �10.9 Tyr-188
Ile-199

Tyr-72
Gly-121
Ser-203

Tyr-398 Trp-286

CDB0885 Ferula narthex �7.5 �12.6 Tyr-435 Tyr-72 Tyr-398 Trp-286
Tyr-341

CDB0794 Nicotiana tabacum �9.3 �10.3 Cys-172
Tyr-435

— Tyr-326 Tyr-337
Tyr-341

CDB0029 Aegle marmelos �9.3 �9.4 Tyr-435 — Tyr-398 Tyr-341
CDB0375 Polygala fruticosa �7.9 �10.2 — — Tyr-326

Tyr-398
Tyr-435

Trp-286
Tyr-337
Tyr-341

CDB0062 Ferula polyantha �5.8 �10.8 — Gly-121
Ser-203

Tyr-398
Tyr-435

Trp-286

CDB0469 Aspergillus fiavus �5.8 �10.5 — Tyr-124
Tyr-133

Leu-171 Trp-86

CDB0821 Micromelum minutum �5.5 �9.2 — Tyr-124 Tyr-326
Tyr-398

Tyr-337

a7-(3- chlorobenzyloxy)-4-(methylamino)methyl-coumarin; bDonepezil.

Figure 7. Docking conformations of the selected coumarin candidates (chartreuse color) superposed to reference ligands (cyan color). (1A) CDB0738-MAO-B com-
plex; (2A) CDB0046-MAO-B complex; (1B) CDB0738-AChE complex; (2B) CDB0046-AChE complex.
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brain-acting drugs. CNS permeability is another parameter
that takes the blood-brain permeability surface (logPS) as a
factor. Most of the selected coumarins are considered to
penetrate the CNS while some others have average perme-
ability, CDB0885 and CDB0062 are considered unable to
penetrate the CNS due to their low logPS valules (< �3.0).
Furthermore, all compounds, excluding the reference ligands,
were identified as non-inhibitors of CYP2D6, which is particu-
larly necessary for drugs acting on the brain since the
expression of CYP2D6 is higher in the brain and is involved

in metabolizing endogenous neural compounds suggesting
its neuroprotective properties. Ames toxicity revealed that six
coumarins including the reference MAO-B inhibitor are pre-
dicted as mutagenic. Hepatotoxicity also predicted three cou-
marins in addition to the reference ligands as positive for
inducing liver related injuries.

Water solubility: Solubility of the molecule in water at 25 �C
(log mol/L); Intestinal absorption: Percentage that will be
absorbed through the human intestine; BBB permeability:
Logarithmic ratio of brain to plasma drug concentrations.

Figure 8. Protein-ligand interaction diagrams of the selected coumarin candidates. (1A) CDB0738-MAO-B complex; (2A) CDB0046-MAO-B complex; (1B) CDB0738-
AChE complex; (2B) CDB0046-AChE complex.

Table 7. ADMET prediction results of the selected coumarins.

Compound Water solubility Intestinal absorption BBB permeability CNS permeability CYP2D6 interaction Ames toxicity Liver toxicity

C18 �4.2 93.7 0.2 �2.1 Yes Yes Yes
E20 �4.6 93.7 0.2 �1.5 Yes No Yes
CDB0738 �5.5 99.4 �0.2 �1.7 No No No
CDB0046 �3.6 97.3 �0.5 �2.9 No No No
CDB0042 �3.9 96.7 �0.3 �2.4 No Yes No
CDB0885 �3.4 78.2 �0.9 �3.4 No Yes Yes
CDB0794 �3.3 94.2 �0.2 �2.2 No Yes No
CDB0029 �3.4 100 �0.5 �2.1 No Yes Yes
CDB0375 �4.3 92.5 �0.7 �2.9 No No Yes
CDB0062 �3.5 100 �0.8 �3.1 No No No
CDB0469 �3.4 100 �0.1 �2.9 No Yes No
CDB0821 �4.4 95.2 �0.6 �1.9 No No No
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(logBB > 0.3 is considered to cross the BBB while molecules
with logBB<-1 are poorly distributed to the brain; CNS perme-
ability: Compounds with a logPS>-2 are considered to pene-
trate CNS, while those with logPS<-3 are considered as unable
to penetrate the CNS; Ames toxicity: A positive prediction indi-
cates that the compound is mutagenic and therefore may act as
a carcinogen; Liver toxicity: Drug-induced liver injury.

3.5. Molecular dynamics simulations

The best coumarin candidates namely, CDB0738 and CDB0046
in complex with MAO-B and AChE were selected from the

molecular docking study in addition to the reference protein-
ligand complexes to perform molecular dynamics simulations
and assess their stability over time. Various molecular dynam-
ics analyses were conducted such as root-mean square devi-
ation (RMSD), root-mean square fluctuation (RMSF), protein-
ligand interactions and ligand properties variation with respect
to the simulation period.

3.5.1. Root-mean square deviation
The RMSD plots of the selected coumarin candidates and the
reference inhibitors in complex with MAO-B and AChE are
shown in Figure 9. The RMSD values indicate how much the

Figure 9. Time-dependent protein–ligand root-mean square deviation (RMSD) plots of MAO-B in complex with reference inhibitor (C18) (1A), CDB00738 (2A),
CDB00046 (3A) and AChE in complex with reference inhibitor (donepezil) (1B), CDB00738 (2B), CDB00046 (3B).
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protein and ligand have moved from their starting positions
and how stable the complex is as a result.

The CDB0738-MAOB complex showed low RMSD values of
around 2.5 Å, which is acceptable for protein-ligand

complexes (Ahmad et al., 2022). This suggests that the com-
plex is relatively stable and that the protein and ligand have
only moved slightly from their initial positions. The CDB0046-
MAOB complex, however, showed larger RMSD values of

Figure 10. Time-dependent protein–ligand root-mean square fluctuation (RMSF) plots of MAO-B in complex with reference inhibitor (C18) (1A), CDB00738 (2A),
CDB00046 (3A) and AChE in complex with reference inhibitor (donepezil) (1B), CDB00738 (2B), CDB00046 (3B).
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around 4Å, indicating that the complex is less stable and
that the protein has moved significantly over time. This
could be due to the bulky size of the CDB0046 molecule
inducing structural changes to the protein. This is also noted
in the ligand RMSD which revealed deviations around 1, 2,
and 2.4 Å for the reference inhibitor, CDB0738 and CDB0046
respectively.

For the AChE complex, the reference complex displayed
RMSD values of around 2Å, which is also considered accept-
able (Kua et al., 2002). The CDB0738-AChE complex exhibited
even lower RMSD values of around 1.75 Å, indicating that
the complex is more stable than the reference complex. The
CDB0046-AChE complex showed similar RMSD values to the
reference complex, around 2Å. Regarding the ligand RMSD
values, Donepezil showed very low values ranging between
0.25 and 0.75 Å with respect to the protein, indicating that it
is highly stable in the protein cavity. CDB0738 showed
slightly higher values of around 1.25 and 1.5 Å, while
CDB0046 was the least stable with values around 2Å during
the first 75 ns but stabilized to around 1.25 and 1.5 Å for the
rest of the simulation.

Overall, the RMSD results suggest that CDB0738 may be a
more suitable candidate for inhibition of MAO-B and AChE
than the reference inhibitors and CDB0046 due to its stability
in the protein cavity.

3.5.2. Root-mean square fluctuation
The RMSF is a valuable tool in analyzing the fluctuations of
individual atoms along the protein chain during molecular
dynamics simulations (Mart�ınez, 2015). The RMSF plots
shown in Figure 10 display the fluctuations in the protein
structure, with peaks indicating areas of the protein that
show the highest amount of movement. It is common to see
that the ends (N-terminal and C-terminal) of the protein fluc-
tuate more than any other part of the protein structure. On
the other hand, secondary structure elements like a-helices
and b-strands tend to be more rigid and less flexible com-
pared to loop regions, and thus, exhibit lower levels of fluc-
tuation. In addition, protein residues that interact with the
ligand are identified on the RMSF plot by green-colored ver-
tical bars, highlighting the specific areas of the protein that
are involved in binding with the ligand.

Figure 10 shows the residues of the MAO-B enzyme in
complex with the selected coumarins remained stable
throughout the simulation. The results indicate the highest
fluctuations were at 5 Å for all three MAO-B complexes, but
these fluctuating residues are not involved in ligand binding
as they are in the C-terminal region, indicating slight con-
formational change.

For AChE, the RMSF analysis displays some high fluctua-
tions around 3Å, however, the ligand-binding regions are

Figure 11. Simulation interaction diagrams and histograms of C18 (A), CDB0738 (B) and CDB0046 (C) in complex with MAO-B. Residues involved in the interactions
are presented in the x axis, the y axis presents the normalized value of the temporal length of the interactions during the simulation.
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less fluctuating, with values around 1.6 Å in the reference
complex. The CDB0738-AChE structure shows high flexibility
near residues 300–400, and similar fluctuations were
observed in CDB0046-AChE and in the literature (Pitchai
et al., 2020). For all complexes, the regions with the highest
mobility were dispersed around C-terminal residues 480–520,
considered typical as it is an unstructured part of the
protein.

3.5.3. Protein-ligand interactions
The simulation results revealed the role of each amino acid
in protein-ligand interactions. The diagrams of MAO-B com-
plex interactions (Figure 11) showed that most of the interac-
tions with the active site of MAO-B are hydrophobic.
Additionally, two hydrogen bonds were preserved in the ref-
erence complex, involving Gln-206 and Tyr-435, which are
common in MAO-B inhibitors (Azam et al., 2012). Another

water-mediated hydrogen bond was observed involving Ile-
198 in the ‘gating’ cavity. The hydrophobic nature of the
cavity resulted in most of the other interactions being hydro-
phobic. The key hydrophobic interactions were mainly with
Leu-171, Ile-199, Tyr-326, Tyr-398, and Tyr-435. Furthermore,
CDB0738 formed hydrogen bonds with Tyr-188, Tyr-398, and
Tyr-435 of the aromatic cage. The simulation also revealed
the presence of strong water bridges involving Pro-102, Leu-
171, and Ile-199. Finally, CDB0046 mainly interacted with
Pro-102 of the entrance cavity and Cys-172 via hydrogen
bonds, due to the molecule’s length. Other hydrophobic
interactions involving Leu-171 and Tyr-326 were also
observed.

Figure 12 highlights the interactions between the bind-
ing pocket residues of AChE and docked ligands. The plot
provides a comprehensive understanding of the preserva-
tion of essential interactions such as hydrogen bonding,
hydrophobic interactions, and water-mediated contacts

Figure 12. Simulation interaction diagrams and histograms of E20 (A), CDB0738 (B) and CDB0046 (C) in complex with AChE. Residues involved in the interactions
are presented in the x axis, the y axis presents the normalized value of the temporal length of the interactions during the simulation.
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throughout the simulation, as supported by several studies
in the literature (Daoud et al., 2018; Shen et al., 2002).
Donepezil, the reference inhibitor, has been shown to form
a hydrogen bond with Tyr-337 in the PAS. This amino acid
is known to bind the quaternary trimethylammonium tail
group of acetylcholine and may therefore play a crucial role
in inhibiting AChE activity (Messaad et al., 2022; Zhou et al.,
2010). The ionic interaction with Asp-74 in the PAS has also
been shown to play a role in the specificity of cationic
organophosphonates as it acts as a proton acceptor (Barak

et al., 1994; Sugimoto et al., 2000). The hydrophobic interac-
tions with Trp-86, Trp-286, and Tyr-341 in both the CAS and
PAS have been shown to stabilize the ligand in the binding
pocket and contribute to the inhibition (Hosea et al., 1996).

For CDB0738, the three hydrogen bonds with Asp-74, Ala-
127, and Tyr-133 in the PAS have been shown to play a crit-
ical role in inhibition (Dhananjayan et al., 2013). CDB0046
has important hydrogen bonds with Tyr-133 in the PAS and
Glu-202 in the CAS, as well as hydrophobic interactions with
Trp-86 and Tyr-341 in both anionic sites.

Figure 13. Variation in the ligand properties (RMSD, rGyr, intraHB, MolSA, SASA and PSA) with respect to the simulation time. (1A) The reference MAO-B inhibitor,
C18; (2A) CDB0738; (3A) CDB0046; (1B) the reference AChE inhibitor, Donepezil; (2B) CDB0738; 3B) CDB0046.
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3.5.4. Ligand properties variation
To assess the stability of the selected compounds in the cav-
ities of MAO-B and AChE, five molecular properties namely,
ligand RMSD, radius of gyration (rGyr), molecular surface area
(MolSA), solvent accessible surface area (SASA), and polar
surface area (PSA) were analyzed over a 100 ns simulation
period, as depicted in Figure 13. The ligand RMSD measures
the deviation of a ligand’s conformation relative to a refer-
ence conformation, usually the first frame (Krishnaveni,
2015). The RMSD values of all compounds remained below
2Å throughout the simulation for AChE. As for MAO-B,
CDB0738 showed fluctuations at 2.4 Å before stabilizing at
2 Å at the end of the simulation, meanwhile CDB0046 exhib-
ited some deviations around 3Å through all the simulation.
The radius of gyration, which measures the ‘extendedness’ of
a ligand and is equivalent to its principal moment of inertia,
remained constant and ranged from 4 to 5Å for the selected
compounds which is due to the size of the ligands and their
flexibility resulting in more mobility, thus reducing their com-
pactness. The MolSA was calculated using a probe radius of
1.4 Å and represents the van der Waals surface area. The
SASA area reflects the surface area accessible to water mole-
cules, and the polar surface area represents the solvent-
accessible surface area that is contributed by only oxygen
and nitrogen atoms. Despite the exposure and rotational
flexibility of the protein and the ligand, deviations in the sur-
face area (MolSA, SASA and PSA) were found to be higher in
CDB0046 when compared to CDB0738 indicating a higher
degree of charged surface area in the former which can
affect the solubility and stability of a molecule in polar sol-
vents, such as water. For MolSA and SASA, the size of the
molecule and the specific solvent used can affect the values
obtained. For example, larger molecules will generally have
larger MolSA and SASA values, while smaller molecules will
have smaller values. Similarly, different solvents may lead to
different MolSA and SASA values, depending on the size and
properties of the solvent molecules (Ferdausi et al., 2022).

4. Conclusion

MAO-B and AChE are considered relevant targets when
developing neuroprotective drugs against Parkinson’s and
Alzheimer’s disease. Coumarins and their derivatives have
been synthetized for decades and extensively evaluated
against neurodegenerative diseases, however natural cou-
marins are yet to be investigated. The present study aimed
to collect all available naturally occurring coumarins with
their corresponding natural sources. A chemical library was
designed to bioprospect novel coumarin candidates as neu-
roprotective agents. QSAR models were generated using all
available MAO-B and AChE inhibitors with their reported
experimental activity to screen for potential MAO-B and
AChE inhibitors from natural coumarins. Our results revealed
ten coumarins with pIC50 values > 6. The selected coumarins
were subjected for molecular docking study to assess their
binding affinities and molecular interactions. CDB0738 and
CDB0046 showed potential as inhibitors for MAO-B and
AChE. Both compounds showed promising interactions with

critical amino acids involved in the stability and the specifi-
city of MAO-B and AChE, indicating their potential affinity
and selectivity towards these enzymes. Molecular dynamics
were performed to analyze the stability of the protein-ligand
complexes over 100 ns simulation period. Our results indi-
cated that CDB0738 had the lowest RMSD values, around
2.5 Å for MAO-B and 1.75 Å for AChE, indicating that it was
the most stable complex among the candidates. Moreover,
RMSF analysis showed typical fluctuations in the N- and
C-terminal residues, however the ligand-binding regions
were less fluctuating. Analysis of molecular interactions
revealed the presence of key hydrogen bonds and high-
lighted the importance of hydrophobic interactions as
reported in the literature. For AChE, the two coumarin candi-
dates, CDB0738 and CDB0046, formed critical interactions
with residues from the CAS and the PAS in a similar manner
to the reference inhibitor, Donepezil. Finally, the in silico
ADMET parameters of the screened coumarins were found to
be acceptable and within the suitable range for human use.
This study provides renewed hope that naturally occurring
products, especially coumarins could potentially lead to the
development of a new neuroprotective drug for the treat-
ment of Parkinson’s and Alzheimer’s disease. However, add-
itional in vitro and in vivo studies are needed to confirm
their effectiveness.
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