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Abstract
Parkinson’s disease is characterized by a multifactorial nature that is linked to different pathways. Among them, the abnormal 
deposition and accumulation of α-synuclein fibrils is considered a neuropathological hallmark of Parkinson’s disease. Several 
synthetic and natural compounds have been tested for their potency to inhibit the aggregation of α-synuclein. However, the 
molecular mechanisms responsible for the potency of these drugs to further rationalize their development and optimization are 
yet to be determined. To enhance our understanding of the structural requirements necessary for modulating the aggregation 
of α-synuclein fibrils, we retrieved a large dataset of α-synuclein inhibitors with their reported potency from the ChEMBL 
database to explore their chemical space and to generate QSAR models for predicting new bioactive compounds. The best 
performing QSAR model was applied to the LOTUS natural products database to screen for potential α-synuclein inhibi-
tors followed by a pharmacophore design using the representative compounds sampled from each cluster in the ChEMBL 
dataset. Five natural products were retained after molecular docking studies displaying a binding affinity of − 6.0 kcal/mol 
or lower. ADMET analysis revealed satisfactory properties and predicted that all the compounds can cross the blood–brain 
barrier and reach their target. Finally, molecular dynamics simulations demonstrated the superior stability of LTS0078917 
compared to the clinical candidate, Anle138b. We found that LTS0078917 shows promise in stabilizing the α-synuclein 
monomer by specifically binding to its hairpin-like coil within the N-terminal region. Our dynamic analysis of the inhibitor-
monomer complex revealed a tendency towards a more compact conformation, potentially reducing the likelihood of adopting 
an elongated structure that favors the formation and aggregation of pathological oligomers. These findings offer valuable 
insights for the development of novel α-synuclein inhibitors derived from natural sources.
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Introduction

Neurodegenerative disorders, including Alzheimer’s and 
Parkinson’s disease (PD), are among the most common 
neurological conditions globally [1]. These disorders are 
characterized by the gradual loss of brain cells due to a 
variety of factors, including the accumulation of amyloid 
fibrils, oxidative stress, mitochondrial dysfunction, and 
metal accumulation [2]. PD is the second most common 
neurological disorder in the world, characterized by the loss 
of dopaminergic neurons in the midbrain and resulting in 
dopamine deficiency in the striatum [3]. It is estimated to 
affect 6 million people globally, with a projected increase 
in prevalence of two- to threefold by 2030 [4, 5]. Common 
motor symptoms of PD include dyskinesia, tremors, and dif-
ficulty with movement [6]. Non-motor symptoms, such as 
depression, insomnia, and constipation, may also occur [7]. 
Evidence suggests that oxidative damage and mitochondrial 
imbalance contribute to the degeneration of dopaminergic 
neurons in PD [8], leading to a need for novel “disease-
modifying” therapies [9]. Current treatments for PD include 
L-DOPA therapy, which is considered the gold standard for 
controlling motor symptoms, and dopaminergic treatments 
such as dopamine agonists, monoamine oxidase-B (MAO-B) 

inhibitors, and catechol-O-methyltransferase (COMT) 
inhibitors [10, 11]. More recently, non-dopaminergic treat-
ments, including adenosine  A2A and N-methyl-d-aspartate 
(NMDA) receptor antagonists, have been shown to be effec-
tive in relieving PD symptoms and slowing neuronal damage 
[12, 13]. Many other potential “disease-modifying” thera-
pies are under development for PD, including agents that 
modulate α-synuclein, neurotrophic factors, inflammation 
modulators, neuroprotective agents, and multi-target drugs 
[14–16].α-synuclein is a protein that is expressed in neurons 
of the central and peripheral nervous systems [17]. It is a 
member of the synuclein family of proteins, which are char-
acterized by the presence of a central non-amyloid β com-
ponent (NAC) domain and an amino-terminal domain that is 
rich in hydrophobic amino acids [18]. α-synuclein is thought 
to play a role in the regulation of neurotransmitter release 
and in the formation and maintenance of presynaptic termi-
nals [19]. In PD, abnormal accumulation and aggregation 
of α-synuclein in the brain is believed to contribute to the 
degeneration of dopaminergic neurons and the development 
of PD symptoms [20]. The aggregation of α-synuclein can 
also lead to the formation of intracellular inclusions called 
Lewy bodies, which are a hallmark of PD pathology [21]. 
The precise mechanisms by which α-synuclein contributes 
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to the development of PD are not fully understood, but there 
is evidence suggesting that α-synuclein can affect the func-
tion of mitochondria, the integrity of the cytoskeleton, and 
the ability of cells to respond to stress [22]. A growing body 
of experimental evidence highlighted the potency of small 
molecules to inhibit the aggregation of α-synuclein fibrils. 
Among them, Anle138b and NPT200-11 are currently evalu-
ated in clinical trials for their efficacy and safety. They are 
thought to reduce α-synuclein aggregation and misfolding, 
however, the molecular mechanisms behind their activity are 
yet to be elucidated [23, 24].

The 3D structure of α-synuclein has been resolved 
through solution NMR (PDB ID: 1XQ8) [25]. The snapshot 
represents a micelle-bound α-synuclein monomer at atomic 
resolution as shown in Fig. 1. The monomer is formed by 
140 amino acids and has a molecular weight of approxi-
mately 14 kDA consisting of a membrane binding N-termi-
nal region, a NAC region and an acidic C-terminal tail [26].

Previous experimental evidence revealed the molecu-
lar mechanisms of flavonoids and their anti-aggregation 
effects on α-synuclein, it was suggested that the binding 
site for small molecules is in the interhelical loop between 
the hairpin-like α-helices formed by the residues 30–48 
[27, 28]. Several natural mutations that modify the mem-
brane-binding affinity have been identified in this region, 
such as A30P and E46K, both of which are linked to dis-
tinct disease pathology [28]. Furthermore, a recent study 
examined the favorable binding site between α-synuclein 
and Quercetin, a flavonoid found in many fruits, vegeta-
bles, leaves, seeds, and grains. They found that Quercetin 

binds near the lysine-rich region formed by the resi-
dues: LYS-32, LYS-43, LYS-45, and VAL-40 [29]. The 
effectiveness of Quercetin and its oxidized form against 
α-synuclein fibrillization has been demonstrated in many 
in vitro assays and neuron-like PC12 cell models [30, 31]. 
When Quercetin interacts with early-stage aggregates, they 
result in highly soluble α-synuclein oligomers. This occurs 
because the polyphenol binds to the lysine side chains 
located in the N-terminal domain of α-synuclein [32].

In the present study, a dataset of experimentally 
evaluated α-synuclein inhibitors was retrieved from the 
ChEMBL database (https:// www. ebi. ac. uk/ chembl/) [33] 
and was employed to develop quantitative structure–activ-
ity relationship (QSAR) models to screen for novel poten-
tial α-synuclein inhibitors. Exploratory data analysis was 
performed to define the chemical space of bioactive inhibi-
tors and cluster similar compounds. The best performing 
QSAR model was selected to screen for natural products 
as potential α-synuclein inhibitors. Moreover, a pharmaco-
phore was generated from the representative experimental 
drugs and was used to further screen our dataset. A molec-
ular docking study was conducted on the remaining com-
pounds to evaluate the molecular interactions involved in 
the ligand binding. Subsequently, an ADMET analysis was 
conducted to evaluate the suitability of the compounds to 
act as central nervous system (CNS) drugs. Finally, 100 ns 
molecular dynamics (MD) simulations were conducted to 
assess the stability of α-synulcein in the unbound state 
and when bound to the reference inhibitor and the selected 
natural products.

Fig. 1  Micelle-bound α-synuclein monomer solved by solution NMR (PDB ID: 1XQ8) and the corresponding full sequence. The structure is 
formed by three domains: N-terminal, NAC, and C-terminal region
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Materials and methods

Bioactivity dataset preparation

A bioactivity dataset was retrieved from the ChEMBL data-
base containing chemical structures of 10,408 compounds 
with their reported potency against human α-synuclein [33]. 
The dataset was curated by removing duplicate compounds. 
The molecules were classified as either “active” or “inac-
tive” according to the information provided in the ChEMBL 
dataset. Compounds with “inconclusive” labels were omitted 
from the study. The processed dataset contained 524 com-
pounds labelled as “active” and 3755 labelled as “inactive”. 
To obtain a more balanced classification, inactive com-
pounds were clustered using Tanimoto similarity coefficient 
[34]. The final dataset contained 1124 compounds where 
524 are “active” and 600 are “inactive”.

QSAR modelling

The final dataset was used to generate 2048 bits of circular 
molecular descriptors using Morgan fingerprints included 
in the RDKit cheminformatics suite with a Radius value of 
2 based on the popular extended-connectivity fingerprints 
(ECFP4) derived from the SMILES representations of the 
compounds in the dataset [35, 36]. Datasets were split into 
training and testing sets using the 70/30 rule. The testing set 
was subject to an additional 80/20 split into testing and vali-
dation sets before building the QSAR models as illustrated 
in Fig. 2. Various statistical metrics were used to assess the 
performance of the machine learning models. To evaluate 
the classification ability, parameters such as true positive 

rate (TPR) (Eq. 1), true negative rate (TNR) (Eq. 2), false 
positive rate (FPR) (Eq. 3), false negative rate (FNR) (Eq. 4), 
accuracy (ACC) (Eq. 5), and Matthews correlation coeffi-
cient (MCC) (Eq. 6) were calculated using the following 
equations:

Natural products dataset preparation

The chemical structures of natural products were obtained 
from the LOTUS database in SMILES format. The data-
base contains more than 200,000 distinct compound names 
and structural elements, as well as over 500,000 records of 

(1)TPR =
TP

(TP + FN)

(2)TNR =
TN

(FP + TN)

(3)FPR =
FP

(FP + TN)

(4)FNR =
FN

(FN + TP)

(5)ACC =
(TP + TN)

(P + N)

(6)

MCC =
(TP × TN) − (FP × FN)

√

(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)

Fig. 2  Machine learning-based QSAR modelling workflow for α-synuclein inhibitors reported in the ChEMBL database
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distinct, fully cited structure-organism pairs [37]. The struc-
tures were filtered using Lipinski’s rule of five to remove any 
compounds that did not meet the criteria for orally active 
drugs [38]. The remaining compounds were analyzed using 
the DataWarrior Cheminformatics program to generate their 
2D structures and calculate their physicochemical proper-
ties [39]. Only compounds with properties within the rec-
ommended range for orally active drugs were retained and 
saved in a CSV file for subsequent use in QSAR bioactivity 
prediction.

Pharmacophore modelling

To minimize the number of compounds for molecular dock-
ing experiments and ensure that only those meeting the 
essential pharmacophoric prerequisites present in clinical 
candidates were considered, we employed the Pharmit web-
server (https:// pharm it. csb. pitt. edu/) [40]. Using the clinical 
candidate Anle138b as a reference, we constructed our phar-
macophore with the help of Pharmit. The pharmacophore 
was subsequently employed to screen the natural products 
that had been predicted to be bioactive through our QSAR 
study. The remaining compounds were then subjected to 
molecular docking investigations.

Molecular docking

The solution NMR structure of α-synuclein monomer was 
retrieved from the RCSB PDB (https:// www. rcsb. org/) with 
PDB ID: 1XQ8 [25]. Polar hydrogens and Kollman charges 
were added using AutoDockTools 1.5.6 [41]. The C-terminal 

tail was omitted from the study to ease the calculation charge 
and the resulting protein was used for molecular docking, 
without any further adjustment. The binding site drugga-
bility was assessed using DoGSiteScorer which is a grid-
based method that uses a Difference of Gaussian filter to 
detect potential binding pockets solely based on the 3D 
structure of the protein [42, 43]. The highest-scoring pocket 
(Drug Score = 0.55) was found to be in the interhelical loop 
between the two α-helices as mentioned in the literature [27, 
28]. The grid box was centered around this region formed by 
residues 30–48 of α-synuclein with the coordinates: − 12.29 
x − 24.50 x − 82.36 in x, y, and z directions respectively with 
a box size of 24 Å and a spacing of 1 Å. The binding site of 
α-synuclein and its residues is shown in Fig. 3.

Molecular docking was performed using AutoDock Vina 
1.1.2 [44]. Since there is no reference ligand in the protein 
structure, the best docking poses were chosen according 
to their binding affinity and molecular interactions [45]. 
Protein–ligand interactions such as hydrogen bonds and 
hydrophobic interactions were visualized using the Pro-
tein–Ligand Interaction Profiler (PLIP) web tool (https:// 
plip- tool. biotec. tu- dresd en. de/ plip- web/ plip/ index) [46].

ADMET analysis

ADMET stands for Absorption, Distribution, Metabolism, 
Excretion, and Toxicity. These are the key factors that 
determine the potential of a drug candidate to be developed 
into a safe and effective medicine [47]. In silico ADMET 
prediction is the use of computer-based methods to pre-
dict the potential of a chemical compound to be absorbed, 

Fig. 3  Binding site of α-synuclein monomer at the interhelical loop located in the N-terminal region (PDB ID: 1XQ8)
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distributed within the body, metabolized, excreted, and 
cause toxicity in living organisms [48]. ADMET prediction 
is an important tool in the early stages of drug discovery and 
development, as it allows researchers to identify potential 
compounds with favorable ADMET properties, reducing 
the need for costly and time-consuming animal testing [49]. 
In this study, pkCSM webserver (https:// biosig. lab. uq. edu. 
au/ pkcsm/) [50] was used to compute various parameters 
such as water solubility to determine how easily a drug can 
dissolve in the body and be absorbed into the bloodstream, 
intestinal absorption which refers to the extent to which a 
drug is absorbed into the body through the gastrointestinal 
tract, blood–brain barrier (BBB) permeability refers to the 
ability of a drug to pass through the BBB and reach the 
CNS, CYP2D6 interaction refers to the potential of a drug 
to interact with the enzyme CYP2D6, which is involved in 
the metabolism of many drugs [51]. Ames toxicity is a type 
of genotoxicity assessment used to determine the mutagenic 
potential of a compound, specifically its ability to cause 
mutations in bacteria whereas hepatotoxicity refers to the 
potential of a drug to cause injuries to the liver’s normal 
function [45].

Molecular dynamics simulations

The stability of the selected candidates with respect to 
the binding site of α-synuclein monomer was determined 
using MD simulations with GROMACS 2021.3 [52, 53]. 
The protein structure of α-synuclein was prepared using 
CHARMM-GUI webserver [54]. The CHARMM36 all-atom 
force field was used to generate the protein topology file 
with the pdb2gmx module of GROMACS. Meanwhile, the 
CGENFF server (https:// cgenff. umary land. edu/) was used 
to assign atom types and bonded parameters and charges 
to the ligands [55]. The generated ligand files were then 
translated to GROMACS topology files using cgenff_charm-
m2gmx python script [56]. Subsequently, the TIP3P water 
model was chosen to solvate the protein–ligand systems in 
a cubic box of size 150 × 80 × 80 in x, y, and z directions 
respectively.  Na+ and  Cl− ions were added to neutralize the 
system charge. All the systems were simulated in the stand-
ard biological salt concentration of 0.15 mM. For energy 
minimization, the steepest descent technique was utilized, 
with Fmax set to not exceed 1000 kJ/mol/nm. Two succes-
sive 1 ns simulation using canonical NVT, and isobaric NPT 
ensembles were used to equilibrate the system at 300 Kelvin 
and a pressure of 1 bar. All the simulations were carried out 
under periodic boundary conditions (PBC), and long-range 
electrostatic interactions were treated using the particle 
mesh Ewald method [57]. Finally, 100 ns MD simulations 
were then performed for data collection [58–60]. Various 
geometrical properties were calculated using GROMACS 
program to analyze the dynamic behavior of the selected 

complexes such as root-mean square deviation (RMSD), 
root-mean square fluctuation (RMSF), radius of gyration 
(Rg), solvent accessible surface area (SASA), principal com-
ponent analysis (PCA), and hydrogen bonds [61].

Results and discussion

Chemical space of α‑synuclein inhibitors

Chemical space diversity of a dataset is important for the 
performance of machine learning classification models 
because a diverse set of compounds helps to prevent chemi-
cal sampling bias and leads to higher prediction accuracy 
and stronger generalization ability of the models. The chemi-
cal space diversity of the α-synuclein dataset was analysed 
using the Normalized principal moment of inertia ratios 
(NPR) plot to analyse the shape and size of molecules [62]. 
The normalized PMI ratios were then plotted on a triangular 
graph, where the vertices (0,1), (0.5,0.5), and (1,1) represent 
a perfect rod (2-butyne), disc (benzene), and sphere (ada-
mantane), respectively (Fig. 4A). Each molecule is repre-
sented by a single point in a three-dimensional space, with 
the x, y, and z axes corresponding to the normalized princi-
pal moment of inertia (PMI) for the three principal axes of 
the molecule (Ixx, Iyy, Izz). The distance of the point from the 
origin of the plot represents the size of the molecule, while 
the orientation of the point reflects the shape of the mole-
cule. Notably, all the studied α-synuclein inhibitors occupied 
the rod-disc region of the graph characterized by high values 
of NPR1 (I2/I1) and NPR2 (I3/I1). High NPR1 values sug-
gest that the molecules have an elongated or rod-like shape, 
while high NPR2 values indicate a flattened or disc-like 
shape. This observation indicates that the molecules exhibit 
a common structural feature of elongation and a tendency 
toward planarity. T-Distributed Stochastic Neighbor Embed-
ding (t-SNE) is a popular plot for visualizing high-dimen-
sionality data while preserving the distances between the 
points as much as possible. In Fig. 4B, t-SNE analysis was 
used to compare molecules by their structural features based 
on RDkit’s Morgan fingerprints [63]. To identify cluster of 
compounds with similar features, we employed k-means 
clustering method [64]. Then, we determined the optimal 
number of clusters using the silhouette-based algorithm [65]. 
The silhouette score is a metric commonly used to assess 
the effectiveness of clustering techniques [66]. Despite the 
average silhouette score for the five identified clusters was 
0.26 which is considerate fair, the selected diverse set of 
representative compounds for molecular docking from each 
cluster represent compounds with different scaffolds. The 
lack of separation could be due to the dimensionality reduc-
tion resulting in some overlapping regions between clusters. 
Finally, principal component analysis (PCA) was performed 
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to analyze the physicochemical properties of the molecules 
(Fig. 4C) [67]. By examining the correlations with PC1 
(TPSA, HBA, MolWt) and PC2 (HBD, nRotB, LogP), we 
can identify the features that have positive and negative asso-
ciations. Notably, LogP stands out as the “most important” 
feature (descriptor) due to its vector length. Finally, the radar 
chart of beyond Lipinski’s rule of five (bRo5) was performed 
to assess the percentage of the compounds that are unlikely 
to be suitable for oral administration [68]. Figure 4D illus-
trates that the majority of compounds in the dataset adhere 
to the suggested ranges for physicochemical properties as 
defined by Lipinski’s rule of five.

Validation of the QSAR models

Six machine learning (ML) algorithms that are known to 
perform well for QSAR modeling such as Random Forest 
(RF), Support Vector Machine (SVM), k-Nearest Neighbors 
(kNN), Extra Trees (ET), Gaussian Naïve Bayes (GNB), and 
XGBoost (XGB) were selected to build our models [69]. The 
receiving operating characteristic (ROC) curve was used to 
evaluate the quality of the developed QSAR classification 
models by comparing the true positive rate to the false posi-
tive rate. After evaluating the six QSAR models, we identi-
fied that the RF algorithm yielded the highest performance. 
The QSAR model based on the RF algorithm achieved an 
area under the ROC curve (AUC) value of 0.75 (Fig. 5) for 
the testing set and 0.72 for the external validation set for 

α-synuclein inhibitors. This indicates a reasonably good 
predictive ability of the model in distinguishing between 
positive and negative instances. The performance of all the 
QSAR models was also assessed using various performance 
metrics, as shown in Table 1.

The best performing QSAR model based on the RF algo-
rithm was then applied to the LOTUS dataset containing 
129,557 natural products to screen for potential α-synuclein 
inhibitors. 40,251 compounds were retained at this stage and 
were subjected to a pharmacophore-based virtual screening.

Fig. 4  A Normalized principal 
moment of inertia ratios (NPR) 
plot to describe molecules 
shapes. B t-distributed Sto-
chastic Neighbor Embedding 
(t-SNE) plot with K-means 
clustering to describe molecules 
by their structural features and 
identify clusters of molecules 
with similar features. C Princi-
pal component analysis (PCA) 
to describe molecules by their 
physicochemical properties. D 
Radar chart of Beyond Lipin-
ski's Rule of Five (bRo5)

Fig. 5  ROC plot for α-synuclein visualizing the trade-off between 
true positive and false positive rates
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Pharmacophore screening

Prior research has emphasized the significance of the 
nitrogen atoms located in the imidazole ring of the clini-
cal candidate Anle138b (CHEMBL4748063) in estab-
lishing a hydrogen bond with VAL-40 of the interhelical 
loop in α-synuclein [28]. Using the existing literature and 
Anle138b’s chemical structure, we have devised a phar-
macophore model that enables us to narrow down the pool 
of compounds and only retain those exhibiting the desired 
pharmacophoric traits as depicted in Fig. 6.

The pharmacophore model we created contained an 
aromatic ring, a hydrophobic component, and a hydrogen 
donor group in the center. This is consistent with earlier 
research that attempted to develop a pharmacophore model 
for α-synuclein inhibitors [70, 71]. After employing our 
pharmacophore for screening, we were able to identify 103 
compounds that met the proposed criteria out of a total of 
40,251 compounds. These compounds were then subjected 
to molecular docking investigations.

Molecular docking of α‑synuclein inhibitors

A molecular docking study was conducted for the experi-
mental α-synuclein inhibitors as well as the remaining natu-
ral products against the binding site of the target monomer. 
The best docking poses were selected according to their 

binding affinity and their protein–ligand interactions. Only 
five compounds were retained displaying a binding energy of 
− 6.0 kcal/mol or lower as illustrated in Fig. 7. The molecu-
lar docking results of the highest-ranking candidates, their 
chemical structures and their molecular interactions are 
shown in Table 2. The best docking poses were visualized 
using UCSF Chimera software [72] and are shown in Fig. 8.

The selected compounds showed low binding affinity 
when docked against the interhelical region of α-synuclein, 
in contrast to other macromolecules such as enzymes and 
receptors with well-defined binding cavities. However, the 
binding scores, ranging from − 6.0 to − 6.6 kcal/mol, were 

Table 1  Comparing the 
performance of multiple 
machine learning models using 
a variety of statistical metrics

ML model Testing set Validation set

TPR TNR FPR FNR ACC MCC AUC AUC 

Random forest 0.75 0.75 0.24 0.24 0.75 0.51 0.75 0.72
Support vector machine 0.76 0.70 0.29 0.23 0.73 0.47 0.74 0.71
k-nearest neighbors 0.62 0.65 0.34 0.37 0.63 0.27 0.62 0.66
Extra trees 0.65 0.60 0.4 0.34 0.62 0.25 0.62 0.65
Gaussian Naïve Bayes 0.61 0.52 0.47 0.38 0.56 0.13 0.56 0.53
XGBoost 0.72 0.71 0.28 0.27 0.72 0.44 0.72 0.71

Fig. 6  Pharmacophoric features 
selected based on the clinical 
candidate, Anle138b using 
Pharmit server

Fig. 7  Virtual screening workflow used in this study to screen for 
potential α-synuclein inhibitors from natural products
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consistent with other molecular docking studies against 
α-synuclein that have been reported in literature [73, 74].

ADMET evaluation results

The studied molecules were subjected to an in silico 
ADMET analysis to assess their suitability as drugs acting 
on the brain as shown in Table 3. All the compounds dem-
onstrated a good water solubility with LogS values ranging 
from − 3.4 to − 4.9, and displayed high intestinal absorp-
tion (> 90%). Furthermore, all compounds were predicted 
to have the ability to cross the BBB. Importantly, none of 
the compounds were identified as substrates of CYP2D6, an 
enzyme predominantly expressed in the brain that metabo-
lizes endogenous neural compounds with potential neuropro-
tective effects [75]. Additionally, based on the Ames toxicity 
prediction results, five compounds, including four natural 
products, were predicted to be mutagenic. Furthermore, the 
assessment of hepatotoxicity indicated that four compounds 
could potentially cause liver injury and disrupt its normal 
function. Notably, among the predicted toxic compounds, 
the clinical candidate Anle138b was included, underscoring 

the necessity for experimental toxicity studies to confirm 
its safety.

Molecular dynamics analysis

Following the analysis of molecular docking results, the 
clinical candidate Anle138b (CHEMBL4748063) along 
with the selected natural products were chosen for 100 ns 
MD simulations. Additionally, the unbound state of the 
α-synuclein monomer was included to evaluate and com-
pare its stability with the complexes throughout the entire 
simulation period.

Root‑mean square deviation

During the molecular docking study, the protein structure 
was considered rigid. To better understand the interactions 
between the protein and the ligands, MD simulations of the 
docked complexes were conducted in a water environment 
for a duration of 100 ns. The RMSD was calculated rela-
tive to the solution NMR protein of the targeted α-synuclein 
structure (PDB ID: 1XQ8) in complex with the selected can-
didates. Figure 9 displays RMSD values for both the protein 

Table 2  Molecular docking and protein–ligand interactions of α-synuclein inhibitors and the identified natural products

Compound Chemical structure Docking score 
(kcal/mol)

Hydrogen bonds Distance (Å) Hydrophobic interactions

CHEMBL4748063

 

− 6.2 VAL-40 1.9 TYR-39 VAL-40 LYS-43 THR-44 LYS-45

CHEMBL1544679
 

− 6.1 LYS-43 2.0 GLU-35 VAL-40 LYS-43

CHEMBL2133766

 

− 6.0 LYS-45 2.5 GLU-35 VAL-40 LYS-43

CHEMBL1299242
 

− 5.9 VAL-40 3.3 GLU-35 TYR-39 VAL-40 LYS-43

CHEMBL3392484
 

− 5.2 VAL-40 2.5 GLU-35 VAL-40 LYS-43 VAL-48
LYS-43 2.4
LYS-43 2.7

LTS0078917
 

− 6.6 GLU-35 3.4 LYS-32 TYR-39
LEU-38 1.9
LYS-43 3.3

LTS0205810
 

− 6.5 GLU-35 2.1 GLU-35 TYR-39 LYS-43

LTS0027287

 

− 6.2 LYS-45 3.5 TYR-39 VAL-40 LYS-43

LTS0131710

 

− 6.2 GLU-35 2.2 GLU-35 TYR-39 LYS-43 THR-44

VAL-40 2.5
LTS0164686

 
− 6.0 LYS-45 3.4 GLU-35 TYR-39 LYS-43
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backbone and the bound ligands, plotted against simulation 
time for each protein.

The RMSD analysis indicated that the majority of the 
complexes exhibited deviations ranging from 1 to 2 nm 
within the first 20 ns of the simulation. By the 40 ns mark, 

most complexes had reached equilibrium with RMSD val-
ues stabilizing around 1 nm. However, LTS0027287 and 
LTS0164686 showed larger deviations exceeding 2 nm, 
suggesting significant conformational changes. Notably, 
LTS0078917 demonstrated the highest stability throughout 

Fig. 8  Molecular docking conformations of the reference inhibitor Anle138b and the selected natural products when bound to α-synuclein

Table 3  ADMET prediction 
results for the selected 
compounds

Water solubility: Solubility of the molecule in water at 25 °C (log mol/L); Intestinal absorption: Percent-
age that will be absorbed through the human intestine; BBB permeability: Logarithmic ratio of brain to 
plasma drug concentrations. (logBB > 0.3 is considered to cross the BBB while molecules with logBB < − 
1 are poorly distributed to the brain; CYP2D6 substrate: Likeliness of a drug to be metabolized by the 
cytochrome P450; Ames toxicity: Likeliness of a compound to be mutagenic; Hepatotoxicity: Likeliness of 
drug-induced liver injury

Compound Water solubility Intestinal 
absorption

BBB 
perme-
ability

CYP2D6 
substrate

Ames toxicity Hepatotoxicity

CHEMBL4748063 − 3.4 92.1 0.4 No No Yes
CHEMBL1544679 − 4.6 90.2 − 0.7 No No No
CHEMBL2133766 − 4.9 91.6 0.6 No Yes No
CHEMBL1299242 − 3.4 92.6 − 0.7 No No No
CHEMBL3392484 − 4.7 94.5 0.4 No No Yes
LTS0078917 − 4.7 97.2 − 0.8 No No Yes
LTS0205810 − 4.6 96.0 0.4 No Yes Yes
LTS0027287 − 4.3 99.7 − 0.7 No Yes No
LTS0131710 − 3.9 92.5 0.7 Yes Yes Yes
LTS0164686 − 4.0 96.5 0.3 No Yes No

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Molecular Diversity 

1 3

the simulation, maintaining an RMSD value of 0.8 nm over 
the entire simulation duration.

The ligand RMSD is a measure of the structural vari-
ability of a molecule during a simulation [76]. The analyzed 
natural products exhibited a narrow range of fluctuation in 
RMSD values, spanning from 0 to 0.2 nm. This implies that 
these ligands may undergo minor conformational changes 
due to their inherent flexibility. In contrast, LTS0078917 
adopted a stable conformation within the initial 10  ns 
and maintained a significantly more stable RMSD value 
of approximately 0.2 nm throughout the remainder of the 
simulation. These results indicate that LTS0078917 exhibits 
lower structural variability compared to the other ligands 
and is likely to retain a consistent conformation throughout 
the simulation duration.

Root‑mean square fluctuation

The RMSF is a measure of a protein’s flexibility during 
molecular simulations, revealing the level of flexibility in 
different regions of the protein by calculating the motion 
of each residue around the average position [77]. Figure 10 
shows the RMSF profile for the selected complexes, indicat-
ing that the binding of these inhibitors has a similar impact 
on the pattern of residue fluctuations in the protein. The 
regions with the highest fluctuations were found in resi-
dues 0–5 located at the extremity of the N-terminal and 

94–100 representing the beginning of the C-terminal tail, 
with RMSF values greater than 1 nm for the compounds 
LTS0027287 and LTS0131710. However, it is noteworthy 
that these regions exhibit less fluctuation in the unbound 
α-synuclein structure. In contrast, a considerably more stable 
RMSF was observed in the presence of the clinical candi-
date CHEMBL4748063 and LTS0078917. This observation 
suggests that these compounds potentially exert a stabiliz-
ing effect on the protein, reducing the fluctuations in these 
regions. Furthermore, the RMSF analysis revealed that the 
residues surrounding the ligand in the binding pocket exhib-
ited RMSF values less than 1 nm, suggesting a stable binding 
pocket. However, notable peaks in RMSF were observed for 
residues 40–44, which consist of VAL-40, GLY-41, SER-42, 
LYS-43, and THR-44. These particular residues are known 
to be among the most flexible amino acids, indicating their 
inherent mobility even within the binding pocket.

Radius of gyration

Rg is a metric used to assess the size and shape of bio-
molecular structures, such as proteins. It is calculated by 
measuring the root-mean-square distance of all atoms in 
the structure from the center of mass. In the context of 
this study, the Rg values for the protein in complex with 
CHEMBL4748063, LTS0078917, and LTS0131710 were 
found to be consistently stable, with values approximately 
2.4 nm. This is in contrast to the unbound structure, which 
exhibited an Rg value of 2.8 nm, as depicted in Fig. 11. 
The observed stability in Rg suggests that the binding of 
these compounds to the protein may contribute to a more 
compact and restrained conformation compared to the 
unbound state. In contrast, when the protein was bound to 
LTS0205810, fluctuations in the Rg were observed, leading 
to higher values reaching approximately 2.8 nm. Whereas 
the protein completely lost its compactness when bound to 
LTS0027287 resulting in a higher Rg reaching a value of 

Fig. 9  RMSD graphs of the backbone atoms of α-synuclein in com-
plex with the selected ligands (A) and for the heavy atoms of the 
selected ligands with respect to the protein (B)

Fig. 10  RMSF graph of the N-terminus region residues for the 
unbound α-synuclein N-terminus region and when bound to the 
selected ligands
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4 nm and still increasing. This suggests that the binding of 
LTS0027287 causes a change in the shape of the protein 
leading to a more extended conformation which favors the 
formation and aggregation of pathologic oligomers.

Solvent accessible surface

The SASA is a measure of the exposed area of proteins that 
is accessible to solvent molecules, providing information 
about their relative exposure or burial within the protein 
structure [78]. In Fig. 12, the SASA plots for the α-synuclein 
complexes depict changes over the simulation time and on 

a per-residue basis. The analysis reveals a consistent trend 
of decreasing SASA values over time for all complexes. 
Notably, compared to the unbound state of α-synuclein, the 
protein–ligand complexes exhibit increased SASA values, 
indicating greater exposure to solvent molecules. Interest-
ingly, the compound LTS0078917 stands out as it exhibits 
the lowest SASA value among the complexes, suggesting a 
more compact or buried conformation with reduced solvent 
exposure. This could imply stronger interactions or a tighter 
binding of LTS0078917 with α-synuclein, leading to a more 
constrained and less exposed protein–ligand complex.

On the other hand, the analysis of SASA per residue con-
sistently demonstrated a similar trend across all the com-
plexes, where the calculated area values ranged from 1 to 2 
 nm2. These values are considered very low, indicating the 
hydrophobic nature of these regions. Notably, the C-ter-
minal acidic region exhibited the highest solvent exposure 
among the residues, which is associated to its hydrophilic 
properties.

Principal component analysis

PCA is a technique used to analyze the motion of biomo-
lecular systems in a molecular dynamics simulation [79]. 
It identifies the dominant modes of motion by extracting 
eigenvectors and eigenvalues from the trajectory data. These 
eigenvectors and eigenvalues describe the principal compo-
nents and their amplitudes, respectively, capturing the inter-
nal motions within a protein [80]. In our study, we employed 
PCA to investigate conformational changes in the selected 
complexes. Specifically, we focused on the backbone atoms 
and analyzed the motions associated with the principal com-
ponents (PCs).

Since the first few eigenvectors adequately describe most 
of the internal motions in a protein, we selected the first 40 
eigenvectors to calculate the concerted motions in the final 
50 ns of the trajectory. Figure 13A illustrates the eigenvalues 
obtained by diagonalizing the covariance matrix of atomic 
fluctuations. The eigenvalues are ordered in decreasing mag-
nitude and correspond to their respective eigenvectors. For 
the last 50 ns of the trajectories, the first ten eigenvectors 
account for 52.62%, 95.06%, 94.72%, 78.71%, 78.05%, and 
72.21% of the motions in CHEMBL4748063, LTS0078917, 
LTS0205810, LTS0027287, LTS0131710, LTS0164686 
complexes, respectively. Another approach to visualizing the 
dynamics of the complexes is by generating a 2D projection 
plot using PCA. The first PC1 captures the most variance 
in the data, followed by PC2 and subsequent components. 
Therefore, we utilized PC1 and PC2 of the backbone atoms 
to create a projection of the entire dataset in a lower-dimen-
sional space suitable for 2D visualization. Figure 13B pre-
sents the projection of the two selected eigenvectors for all 
complexes. It is known that complexes occupying a smaller 

Fig. 12  Solvent accessible surface area for the studied complexes 
over the simulation time (A) and per residue analysis for each com-
plex (B)

Fig. 11  Radius of Gyration of α-synuclein in unbound and bound 
states
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phase space and exhibiting a stable cluster represent more 
stable complexes, while those occupying a larger space and 
showing a non-stable cluster correspond to less stable com-
plexes. From the plot, it was observed that LTS0027287 
complex occupied a larger space, followed by LTS0205810 
and LTS0164686, indicating a less stable cluster compared 

to other complexes. On the other hand, CHEMBL4748063 
and LTS0078917 occupied a smaller phase space and dem-
onstrated a stable cluster.

In Fig. 14, we presented snapshots of the initial confor-
mations superposed with the final conformations at 100 ns, 
shedding light on the dynamics of the protein–ligand com-
plexes. Our findings reveal that certain complexes underwent 
significant conformational changes, resulting in the disrup-
tion of ligand binding to the interhelical loop region. Nota-
bly, LTS0205810, LTS0027287, and LTS0164686 showed 
the most pronounced alterations in their binding modes. 
Conversely, the complexes formed by CHEMBL4748063 
and LTS0078917 displayed a more compact and stable con-
formation, suggesting their potential as stabilizers of the 
α-synuclein monomer. This observation highlights their 
promising role in mitigating the aggregation and oligomeri-
zation of α-synuclein fibrils.

Hydrogen bonds

Hydrogen bonds are crucial interactions that significantly 
contribute to the stability and specificity of protein–ligand 
interactions. In MD simulations, analyzing the hydrogen 
bonds formed between the protein and ligand provides valu-
able insights into the strength and stability of these interac-
tions. Thus, assessing the number and persistence of hydro-
gen bonds during MD simulations is essential in evaluating 
the effectiveness of potential drug candidates.

In our study, we analyzed the hydrogen bonds formed 
by each ligand and the pairs that remained within a dis-
tance of 0.35 nm throughout the simulation time. Fig-
ure 15 presents the dynamic changes in the number of 
hydrogen bonds for all the selected complexes. The first 

Fig. 13  Plot of the eigenvalues of the covariance matrix against the 
first 40 eigenvectors (A). 2D motion projection of α-synuclein back-
bone bound to the selected compounds using first two eigenvectors 
(B)

Fig. 14  Conformation snapshots 
of the studied complexes at 
0 ns (light green) and 100 ns 
(yellow) after recentering and 
rewrapping coordinates
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plot reveals that CHEMBL4748063 formed a peak of five 
hydrogen bonds within the first 20 ns, leading to one per-
sistent pair within 0.35 nm by the end of the simulation. 
Most compounds formed up to three hydrogen bonds. 
However, among the ligands investigated, LTS0078917 
emerged as the most promising candidate, displaying 
notable characteristics in comparison to the other ligands. 
In particular, LTS0078917 demonstrated the formation 
of up to seven hydrogen bonds, with six consistent pairs 
maintained within a distance of 0.35 nm throughout the 
entire duration of the simulation. This suggests strong 
and stable interactions between LTS0078917 and the tar-
get receptor, making it an intriguing candidate for further 
investigation.

Conclusion

Neurodegenerative diseases are associated with protein mis-
folding, which leads to the formation of fibrillar amyloids 
and subsequent damage in the brain and other tissues. In 
PD, the presence of amyloid fibril aggregates indicates the 
abnormal accumulation of the fibrillary protein α-synuclein 
in the brain. This accumulation is believed to contribute to 
the degeneration of dopamine-producing neurons, resulting 
in the motor symptoms of PD. Anle138b shows promise as 
a clinical treatment by preventing the formation of amyloi-
dogenic protein aggregates. In this study, we aimed to gain 
a deeper understanding of its mechanisms of action, particu-
larly in the N-terminal region of α-synuclein, and identify 
potential novel candidates based on natural products using 

Fig. 15  Number of hydrogen 
bonds formed for the trajectory 
of molecular dynamics simula-
tions for the selected ligands in 
complex with the N-terminus 
region of α-synuclein
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QSAR and pharmacophore design approaches. Through 
molecular docking and MD simulations, we found that 
the studied compounds have the ability to bind to the hair-
pin like coil region that separates the two α-helices of 
α-synuclein. By binding to this region, these compounds 
may hinder conformational changes that lead to the adop-
tion of an elongated shape, which is known to promote the 
formation and deposition of oligomers. Additionally, since 
the interhelical region of α-synuclein is involved in lipid 
binding, compounds targeting this region may prevent 
the protein from associating to the lipid membranes. Our 
results highlighted LTS0078917 as a promising candidate, 
displaying strong binding affinity towards the active site of 
α-synuclein. The identified natural products may pave the 
way for further investigation, encompassing the determina-
tion of their bioactivity and optimization in the quest for 
effective PD treatments.
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