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Communicated by Ramaswamy H. Sarma.

ABSTRACT 
Parkinson’s disease is a neurodegenerative disorder characterized by the progressive loss of dopamin-
ergic neurons in the midbrain. Current treatments provide limited symptomatic relief without halting 
disease progression. A multi-targeting approach has shown potential benefits in treating neurodegener-
ative diseases. In this study, we employed in silico approaches to explore the COCONUT natural prod-
ucts database and identify novel drug candidates with multi-target potential against relevant 
Parkinson’s disease targets. QSAR models were developed to screen for potential bioactive molecules, 
followed by a hybrid virtual screening approach involving pharmacophore modeling and molecular 
docking against MAO-B, AA2AR, and NMDAR. ADME evaluation was performed to assess drug-like prop-
erties. Our findings revealed 22 candidates that exhibited the desired pharmacophoric features. 
Particularly, two compounds: CNP0121426 and CNP0242698 exhibited remarkable binding affinities, 
with energies lower than −10 kcal/mol and promising interaction profiles with the chosen targets. 
Furthermore, all the ligands displayed desirable pharmacokinetic properties for brain-targeted drugs. 
Lastly, molecular dynamics simulations were conducted on the lead candidates, belonging to the dihy-
drochalcone and curcuminoid class, to evaluate their stability over a 100 ns timeframe and compare 
their dynamics with reference complexes. Our findings revealed the curcuminoid CNP0242698 to have 
an overall better stability with the three targets compared to the dihydrochalcone, despite the high lig-
and RMSD, the curcuminoid CNP0242698 showed better protein stability, implying ligand exploration 
of different orientations. Similarly, AA2AR exhibited higher stability with CNP0242698 compared to the 
reference complex, despite the high initial ligand RMSD due to the bulkier active site. In NMDAR, 
CNP0242698 displayed good stability and less fluctuations implying a more restricted conformation 
within the smaller active site of NMDAR. These results may serve as lead compounds for the develop-
ment and optimization of natural products as multi-target disease-modifying natural remedies for 
Parkinson’s disease patients. However, experimental assays remain necessary to validate these findings.
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1. Introduction

Neurodegenerative disorders are incurable conditions that 
result in the progressive degeneration of nerve cells in the 
brain (Barnham et al., 2004). Neurodegenerative diseases 
such as Alzheimer’s, Huntington’s, and Parkinson’s diseases 
have complex and multifactorial natures because of the dif-
ferent factors contributing to their progression (Ibrahim & 
Gabr, 2019). Neurodegenerative diseases lead to increased 
mortality and morbidity in older patients and are a great 
burden on society, where there is currently no approved 
treatment to prevent the progression of these diseases (Van 
der Schyf, 2011). Parkinson’s disease (PD) is considered the 
second most frequent neurological disorder that is described 
by the loss of dopaminergic neurons in the midbrain (Dauer 
& Przedborski, 2003). Current therapeutic approaches for the 
treatment of PD offer limited symptomatic benefits to 
patients with no prevention of neuronal loss (Rascol et al., 
2003). Accumulating evidence indicates that oxidative dam-
age and mitochondrial imbalance contribute to the cascade 
of events leading to the degeneration of these dopaminergic 
neurons (Jenner, 2003). Given the susceptibility of resistance 
concerning drugs that act on one therapeutic target and the 
multifactorial nature of neurodegenerative diseases, it has 
become necessary to develop new treatment strategies. In 
this regard, scientists have become convinced that the poly- 
pharmacological approach targeting multiple proteins linked 
to the development and progression of the disease should 
prove to be more beneficial to patients than the current 
approaches (Lang, 2010; Piau et al., 2011).

Monoamine Oxidase (MAO) is a mitochondrial flavoen-
zyme that catalyzes the metabolism of some neurotransmit-
ters such as dopamine (Youdim et al., 2006). It is expressed 
in two isoforms—namely MAO-A and MAO-B that share 
about 70% of their sequence identity but differ by their tis-
sue distribution, substrates, and inhibitors preferences (Wang 
et al., 2013). MAO-A preferentially degrades serotonin while 
MAO-B preferentially metabolizes 2-phenylethylamine and 
benzylamine. Dopamine, adrenaline, and noradrenaline are 
substrates of both isoenzymes (Finberg & Rabey, 2016).

The use of MAO-A inhibitors has been abandoned since 
the discovery that their use can cause a hypertensive crisis 
which is related to the metabolism of tyramine (Yamada & 
Yasuhara, 2004). However, a new generation of selective 
MAO-B inhibitors proved to be relevant especially when con-
sidering that the brain shows an age-related increase in 
MAO-B activity in patients with PD (Carradori & Silvestri, 
2015). During aging, the expression of MAO-B increases in 
the brain and relates to an enhanced dopamine metabolism 
which results in an increased reactive oxygen species (ROS) 
production such as hydrogen peroxide (H2O2) inducing oxi-
dative damage and apoptotic signaling events (Lotharius & 
Brundin, 2002). Given these concerns, MAO-B inhibitors could 
offer both symptomatic and neuroprotective activities 
(Tabakman et al., 2004).

Adenosine A2A receptor (AA2AR) is another successful drug 
target for PD, it represents one of the three subtypes of the 
adenosine receptor, a G protein-coupled receptor formed by 
seven transmembrane a-helices (de Lera Ruiz et al., 2014). 

The link between AA2AR and PD stems from the link that 
AA2AR activation counteracts the actions of dopamine, a key 
neurotransmitter to motor control. Therefore, the blockade 
of AA2AR through the administration of its antagonists could 
help with PD motor symptoms. Moreover, oral administration 
of AA2AR antagonists in experimental models prevented the 
loss of dopaminergic neurons suggesting their neuroprotec-
tive properties (Ikeda et al., 2002).

N-methyl-D-aspartate receptor (NMDAR) is also considered 
a relevant target for treating PD through receptor-mediated 
neuroprotection (Hardingham, 2009). NMDAR is a glutamate 
receptor and ion channel found in neurons, it represents one 
of three types of ionotropic glutamate receptors, with the 
other two being AMPA (a-amino-3-hydroxy-5-methyl-4-isoxa-
zolepropionic acid) and kainate receptors (Gonda, 2012). 
It was demonstrated that the excitatory neurotransmitter, 
glutamate, contributes to the processes of PD (Iovino et al., 
2020). Moreover, it was found that PD patients have higher 
serum concentrations of glutamate when compared to 
healthy subjects (Mironova et al., 2018). Whereas NMDAR 
antagonists display beneficial effects on reversing motor 
symptoms, reducing levodopa-induced dyskinesia, and slow-
ing progressive neurodegeneration in preclinical PD models 
(Stoof et al., 1992). Therefore, NMDAR represents a promising 
target as a therapeutic non-dopaminergic intervention by 
reversing the severe motor complications that derive from the 
current dopamine replacement strategies (Zhang et al., 2019).

Recently, there has been a shift of interest in plants and 
natural products (NPs) when seeking novel remedies for vari-
ous diseases. NPs and their derivatives have been recognized 
for many years as a source of therapeutic agents and struc-
tural diversity (Kingston, 2011; Shen, 2015).

Several studies revealed strong MAO inhibitory activity 
from herbal sources such as flavonoids, xanthones, coumar-
ins, caffeine, and alkaloid derivatives, which also became 
good models for synthetic MAO inhibitors (Erdogan Orhan, 
2016). Moreover, it was found that MAO-B inhibitors may as 
well act as AA2AR antagonists due to the similarity of their 
binding cavities (Carradori et al., 2014). There is also an 
increasing body of evidence that safinamide alleviates motor 
and non-motor PD symptoms through not only MAO-B inhib-
ition which palliates the dopamine deficit in the brain but 
also by regulating glutamate release through voltage- 
dependent sodium channels blockade and calcium channels 
modulation (Stocchi et al., 2022). Furthermore, Ifenprodil, an 
antagonist of the NMDA receptor, specifically of GluN1 (gly-
cine-binding NMDA receptor subunit 1) and GluN2B (glutam-
ate-binding NMDA receptor subunit 2) subunits was found to 
possess competitive MAO-A and MAO-B inhibitory activities in 
the rat brain (Arai et al., 1991). These findings suggest the 
multi-target potential of these drugs to act on multiple targets 
implicated in various pathways of PD physiopathology.

The present study aims to search for novel compounds 
from NPs to act as multitarget drugs against three important 
targets for the development of antiparkinsonian drugs: 
MAO-B, AA2AR, and NMDAR. These compounds could poten-
tially provide combined symptomatic relief and neuroprotec-
tive activities for patients with PD. A multi-stage virtual 
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screening approach combining QSAR classification models, 
pharmacophore screening, molecular docking, and ADME 
evaluation was conducted to study at the molecular level 
the interactions of NPs from the COCONUT database, with 
MAO-B, AA2AR, and NMDAR (Sorokina et al., 2021). The stabil-
ity of the lead compounds was further assessed through 
100 ns molecular dynamics (MD) simulations and compared 
to the reference drugs. Active site residues and binding 
pocket of the reference complexes of MAO-B, AA2AR 
and NMDAR are illustrated in Figure S1 in Supporting 
Information.

2. Materials and methods

2.1. ML and CNN-based QSAR models

Three bioactivity datasets for each target were retrieved 
from the ChEMBL database (https://www.ebi.ac.uk/chembl/), 
containing chemical structures and their reported bioactivity 
against human MAO-B, AA2AR, and NMDAR (GluN1/2B), 
including 5,066 molecules with reported half maximal inhibi-
tory concentration (IC50) values for hMAO B, 7,813 molecules 
with reported constant dissociation (ki) values for hAA2AR 
and 699 reported IC50 for NMDAR (GluN1/2B) belonging to 
homo sapiens and rattus norvegicus since these two organ-
isms express NMDAR (GluN1/2B) with a percent identity 
matrix of 98.58% based on UniProt sequence alignment tool 
(Gaulton et al., 2012; The UniProt Consortium, 2021). The 
datasets were manually curated, and duplicate compounds 
were removed by taking the mean value when multiple bio-
activity values were reported for a given compound. 
Logarithmic transformation was applied to all the activity 

values to better determine the potency of the compounds 
using the negative logarithm base 10 scale to represent the 
data in a more interpretable manner (Tarasova et al., 2015). 
The compounds were then classified as either active or 
inactive. An activity value >6.5 was used to label active com-
pounds, whereas all compounds displaying an activity value 
<5 were labeled as inactive as reported in the literature 
(Burggraaff et al., 2020). Compounds falling within the inter-
mediate range were omitted from the study. The workflow 
of QSAR modeling is shown in Figure 1.

All investigated compounds from the final datasets were 
then converted to SMI (Simplified Molecular Input) format, 
and RDKit cheminformatics software was used to generate 
chemical structures as graphs, and then as binary molecular 
descriptors based on the popular Morgan fingerprints, also 
known as extended-connectivity fingerprints (ECFP4) (Ding 
et al., 2021; Landrum, 2013).

Finally, three machine learning classification algorithms, 
namely Random Forest, Extra Trees, and Support Vector 
Machine were used to generate QSAR models for the 
selected targets through Scikit-learn machine learning library 
in Python (Pedregosa et al., 2011; Wu et al., 2021). 
Convolutional neural networks (CNNs) are a category of 
neural networks that have proven veryeffective in areas such 
as image recognition and classification (Wang et al., 2021). 
CNNs generally consist of many convolutional layers and one 
connected layer corresponding to a classic neural network 
(Figure S2 in Supporting Information). Graph-based and fin-
gerprint-based CNN models were generated to compare their 
performance with traditional ML algorithms using Keras 
and TensorFlow libraries in Python (Singh et al., 2020; Gulli & 
Pal, 2017).

Figure 1. Workflow of QSAR modeling for the prediction of MAO-B, AA2AR, and NMDAR bioactivity.
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Datasets were split into training, testing, and validation 
sets using a 3:1:1 split ratio (Craft & Leake, 2002). The receiv-
ing operating characteristic (ROC) curves were used as a 
quality parameter to assess the performance of the classifica-
tion models by plotting the true positive rate (sensitivity) 
against the false negative rate (specificity), the area under 
the ROC curve (AUC) values range from 0.5 indicating no dis-
crimination to 1 indicating a perfect separation between the 
two classes (Hanley & McNeil, 1982; Herrera-Acevedo et al., 
2021). Performance metrics were calculated such as sensitiv-
ity (SEN) Equation (1), specificity (SPC) Equation (2), false 
positive rate (FPR) Equation (3), false negative rate (FNR)
Equation (4), Matthews Correlation Coefficient (MCC) 
Equation (5), and accuracy (ACC) Equation (6). Five-fold 
cross-validation using 100 data splits was also used to evalu-
ate the performance of the selected models. Finally, the val-
idation sets that were not presented to the generated QSAR 
models yet were used for external validation of the devel-
oped QSAR classification models.

SEN ¼
TP

TPþ FNð Þ
(1) 

SPC ¼
TN

FPþ TNð Þ
(2) 

FPR ¼
FP

FPþ TNð Þ
(3) 

FNR ¼
FN

FNþ TPð Þ
(4) 

ACC ¼
TPþ TNð Þ

Pþ Nð Þ
(5) 

MCC ¼
ðTP� TNÞ� ðFP� FNÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞ�ðTPþ FNÞ�ðTNþ FPÞ�ðTNþ FNÞ

p (6) 

SEN: Number of actual positives correctly identified by a 
classification model; SPC: Number of actual negatives cor-
rectly identified by a classification model; FPR: Number of 
negatives incorrectly classified as positives by a classification 
model; FNR: Number of positives incorrectly classified as neg-
atives by a classification model; ACC: Overall accuracy of a 
classification model by calculating the ratio of correct predic-
tions to the total number of predictions; MCC: is a statistic 
that quantifies the quality of binary classification results by 
considering true and false positives and negatives in a single 
value, ranging from −1 (perfect disagreement) to þ1 (perfect 
agreement).TP: Number of true positives; TN: Number of true 
negatives; FP: Number of false positives; FN: Number of false 
negatives; PþN: Total number of a dataset.

2.2. Ligand database preparation

Chemical structures of the NPs were retrieved in SMILES for-
mat from the COCONUT database, the largest NPs database to 
date (Sorokina et al., 2021). Primary filtration was conducted 
based on Lipinski’s rule of five to eliminate all compounds 
that present any violation of the five rules of orally active 
drugs (Lipinski, 2004; Pollastri, 2010). 2D chemical structures 
and physicochemical properties of all the compounds were 
computed using the DataWarrior Cheminformatics program to 

only retain those with values falling in the recommended 
range (Sander et al., 2015). Possible ionization states were 
generated for all ligands at physiological pH of 7.0 ± 2.0 using 
the Ligprep module of Maestro 12.5 and OPLS3e force field 
(Roos et al., 2019).

2.3. Pharmacophore modeling

Ligand-based virtual screening was conducted using a 
pharmacophore model generated from the reference NMDAR 
antagonist, ifenprodil, and an experimentally evaluated com-
pound, N-(4-chloro-1H-benzimidazol-2-yl) benzamide, which 
displayed an inhibitory activity in the nanomolar range for 
MAO-B and AA2AR (Jaiteh et al., 2018; Williams, 2001). 
Molecular docking was conducted using Glide Extra Precision 
(XP) mode to identify bioactive conformations for the dual- 
target reference ligand and the key moieties responsible for 
the binding with MAO-B and AA2AR (Friesner et al., 2006). 
Alternatively, the bioactive conformation of the NMDAR 
antagonist, ifenprodil was taken from the crystallographic 3D 
structure from RCSB PDB (https://www.rcsb.org/), (PDB ID: 
5EWJ) (Stroebel et al., 2016). The alignment of these two 
ligands was conducted and the Phase module of Maestro 
12.5 was used to generate a 3D-pharmacophore model con-
taining the identified pharmacophoric features necessary for 
the multi-blockade of MAO-B, AA2AR, and NMDAR (Dixon 
et al., 2006). The developed 3D-pharmacophore model was 
then used to further filter the NPs and only retain com-
pounds meeting the proposed pharmacophoric criteria.

2.4. Molecular docking

Crystallographic structures of MAO-B (PDB ID: 2V5Z, reso-
lution ¼ 1.7 Å), AA2AR (PDB ID: 5IU4, resolution ¼ 1.7 Å), and 
NMDAR (PDB ID: 5EWJ, resolution ¼ 2.7 Å) in complex with 
reference inhibitors, safinamide, ZM-241385, and ifenprodil, 
respectively, were retrieved from RCSB PDB (https://www. 
rcsb.org/) (Binda et al., 2007; Segala et al., 2016; Stroebel 
et al., 2016). All the structures were processed using the pro-
tein preparation wizard to assign bond orders, add explicit 
hydrogens to the structure, and fix and optimize side chains 
missing atoms using Prime (Boulaamane et al., 2023; 
Jacobson et al., 2002, 2004). Protonation states for the resi-
dues were assigned using the PROPKA program for predict-
ing the pKa of protein residues at pH ¼ 7.0 (Olsson et al., 
2011).

Co-crystallized ligands were used for the grid box placing 
using the receptor grid generation tool (Schr€odinger Release 
2022-3: Maestro, 2020). Grid dimensions were chosen large 
enough to dock ligands with a similar size to the reference 
compounds. Molecular docking was performed using Glide 
(XP) mode in Maestro 12.5 with a maximum output of five 
conformations per ligand (Friesner et al., 2006). The best dock-
ing poses were chosen according to their docking score and 
RMSD value towards the native ligand for each target protein.
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2.5. ADME properties prediction

Nearly 40% of drug candidates fail in clinical trials due to 
poor Absorption, Distribution, Metabolism, and Excretion 
(ADME) properties (Lin et al., 2003). In silico ADME prediction 
is a quick tool to find if a compound is druglike by calculat-
ing its pharmacokinetics parameters and physicochemical 
properties and can considerably reduce the amount of 
consumed time and resources during the overall drug devel-
opment process (Bhandari et al., 2022). The selected com-
pounds were analyzed based on common pharmacokinetic 
parameters including lipophilicity, water solubility, human 
oral absorption, brain/blood partition coefficient, and human 
serum albumin binding which were predicted using the 
Qikprop tool (Ioakimidis et al., 2008). An overview of the vir-
tual screening workflow is represented in Figure S3 in 
Supporting Information.

2.6. Molecular dynamics simulations

The stability of the most potent compounds complexed with 
the selected target proteins was evaluated through 100 ns 
MD simulations using the Desmond module included in 
Maestro 12.5, Schr€odinger’s suite (2020-3) (Bowers et al., 
2006). The water-soaked solvated system was created in 
Desmond using the System Builder panel. The OPLS3e force 
field was selected, and Single Point Charge (SPC) was used 
as a solvent model with a 10 Å orthorhombic box for both 
proteins. The system was neutralized by randomly adding 
enough counter-ions (Naþ and Cl−) and an isosmotic state 
was maintained by adding 0.15 M NaCl. The solvated model 

system was subjected to energy minimization using OPLS3e 
force field parameters as the default protocol associated with 
Desmond (He et al., 2022). Then, the system was equilibrated 
throughout the simulation time via Constant Number of 
Particles, Pressure, and Temperature (NPT) ensemble at a 
constant 300 K temperature and 1 atm pressure using the 
Nose-Hoover thermostat algorithm and Martyna-Tobias-Klein 
Barostat algorithm, respectively (Ke et al., 2022). A total of 
100 ns simulations were carried out, during which 1000 
frames were recorded. Finally, the MD simulation trajectory 
was analyzed using the Simulation Interaction Diagram (SID) 
tool (AlAjmi et al., 2018).

3. Results and discussion

3.1. QSAR models validation

The ROC curve was used to assess the quality of the devel-
oped QSAR classification models by plotting the true positive 
rate against the false positive rate. For all the classification 
models, AUC values greater than 0.80 were achieved for 
MAO-B, whereas some classification models for AA2AR dis-
played lower AUC values as illustrated in Figure 2. The per-
formance of all the built QSAR models was evaluated using 
different performance metrics as shown in Table 1. Similarly, 
external validation of the developed QSAR classification mod-
els is summarized in Table 2.

Based on the performance of the QSAR classification mod-
els on internal and external datasets, the Random Forest 
model was found to perform the best with an AUC value of 
0.93, 0.91, and 0.94 and MCC value for external sets of 0.81, 

Figure 2. ROC plots of the generated QSAR classification models for MAO-B, AA2AR, and NMDAR.
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0.85, and 0.89 for MAO-B, AA2AR, and NMDAR, respectively. 
The model was then selected for target bioactivity prediction 
against the selected proteins. Out of 216,115 drug-like com-
pounds, 13,996 were predicted as active for MAO-B, among 
them 1,106 were active for AA2AR and 354 were predicted as 
actives for all the selected targets. To avoid chemical sam-
pling bias, a wide chemical space diversity of the training 
sets is mandatory, and it contributes to high prediction 
accuracy and strong generalization ability of the classification 
models (Yang et al., 2022). The chemical space diversity of 
the curated datasets of the selected targets alongside the 
predicted active NPs were explored using the t-stochastic 
neighbor embedding (t-SNE) statistical method (Van der 
Maaten & Hinton, 2008) as shown in Figure 3. Distinct clus-
ters of active compounds, likely signifying diverse scaffolds 
and chemotypes targeting the same protein were observed. 
These clusters are clearly separated from inactive com-
pounds. Interestingly, unique clusters emerge from the 
screened natural products (NPs), potentially representing 
novel chemical classes absent in the ChEMBL datasets. These 
NP clusters also exhibit clear separation from inactive com-
pounds (Figure 2).

3.2. Pharmacophore screening

The pharmacophore hypothesis was based on an experimen-
tally validated MAO-B inhibitor/AA2AR antagonist, and on 
ifenprodil, an NMDAR antagonist as shown in Figure 4(A,B), 
respectively. The molecular docking study revealed the 
importance of the nitrogen atom of the furan and the ben-
zene ring to act as a hydrogen bond donor and establish 
a hydrogen bond with a key residue in the MAO-B entrance 
cavity of the active site namely Tyr-326. This residue is spe-
cific to the MAO-B isoform and acts as a gating residue to 
allow the binding of selective MAO-B inhibitors (Binda 
et al., 2011; Milczek et al., 2011). Moreover, this same com-
ponent is also responsible for the hydrogen bonding with 
Asn-253 of the active site of AA2AR, a key interaction 
deemed important for the stability of AA2AR antagonists 
(Jaakola et al., 2010). In NMDAR, the nitrogen atom is 
responsible for forming a hydrogen bond with Gln-110B as 
reported in the literature (Fjelldal et al., 2019). The 3D- 
pharmacophore model generated using the Phase module 
consisted of two aromatic rings separated by a distance of 
11 Å as shown in Figure 4(C) reflecting the length of the 

Table 1. Performance of the developed QSAR classification models.

Target protein Model

Testing set
5-fold CV

SEN SPC FPR FNR MCC ACC ACC

MAO-B Random forest 0.92 0.93 0.06 0.07 0.85 0.92 0.92
Support vector machine 0.89 0.93 0.20 0.15 0.82 0.91 0.91
Extra trees 0.84 0.80 0.06 0.10 0.82 0.64 0.84
Graph-based CNN 0.86 0.76 0.23 0.13 0.63 0.81 0.83
Fingerprints-based CNN 0.93 0.87 0.12 0.06 0.80 0.90 0.86

AA2AR Random forest 0.88 0.93 0.06 0.11 0.82 0.91 0.90
Support vector Machine 0.92 0.87 0.12 0.16 0.77 0.89 0.86
Extra trees 0.83 0.87 0.12 0.07 0.85 0.71 0.81
Graph-based CNN 0.65 0.87 0.12 0.34 0.53 0.74 0.74
Fingerprints-based CNN 0.83 0.92 0.07 0.16 0.76 0.88 0.87

NMDAR Random forest 0.97 0.90 0.09 0.02 0.88 0.94 0.91
Support vector machine 0.97 0.87 0.12 0.16 0.84 0.91 0.90
Extra trees 0.84 0.87 0.12 0.02 0.85 0.71 0.86
Graph-based CNN 0.84 0.91 0.08 0.15 0.76 0.87 0.88
Fingerprints-based CNN 0.97 0.86 0.13 0.02 0.82 0.90 0.90

SEN: sensitivity (true positive rate); SPC: specificity (true negative rate); FPR: false positive rate; FNR: false negative rate; MCC: Matthews correlation coefficient; 
ACC: accuracy; 5-fold CV: 5-fold cross-validation.

Table 2. External validation of the developed QSAR classification models.

Target protein Model

Performance metrics

SEN SPC FPR FNR MCC ACC

MAO-B random forest 0.87 0.93 0.06 0.12 0.81 0.90
Support vector machine 0.85 0.95 0.15 0.14 0.79 0.89
Extra trees 0.85 0.84 0.04 0.14 0.84 0.69
Graph-based CNN 0.81 0.80 0.19 0.18 0.61 0.80
Fingerprints-based CNN 0.84 0.82 0.17 0.15 0.67 0.83

AA2AR Random forest 0.92 0.93 0.06 0.07 0.85 0.93
Support vector machine 1.00 0.83 0.13 0.12 0.78 0.88
Extra trees 0.87 0.86 0.16 0.00 0.87 0.73
Graph-based CNN 0.72 0.87 0.12 0.27 0.60 0.80
Fingerprints-based CNN 0.92 0.88 0.11 0.07 0.79 0.90

NMDAR Random forest 1.00 0.90 0.10 0.00 0.89 0.94
Support vector machine 1.00 0.86 0.15 0.06 0.84 0.91
Extra trees 0.93 0.85 0.14 0.00 0.89 0.78
Graph-based CNN 0.83 0.88 0.12 0.17 0.72 0.86
Fingerprints-based CNN 1.00 0.82 0.18 0.00 0.79 0.89

SEN: sensitivity (true positive rate); SPC: specificity (true negative rate); FPR: false positive rate; FNR: false negative rate; MCC: Matthews correlation coefficient; 
ACC: accuracy.
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Figure 3. Visual representation of curated ChEMBL datasets for MAO-B, AA2AR, and NMDAR, alongside the predicted active NPs from the QSAR screening using 
t-SNE method based on Morgan fingerprints.

Figure 4. (A) Chemical structure and experimental values of the reference dual MAO-B/AA2AR ligand; (B) chemical structure of the NMDAR reference antagonist, 
ifenprodil; (C) proposed 3D-pharmacophore model to screen for multi-target drugs, the hypothesis consisted of three pharmacophoric features: one aromatic ring, 
one hydrogen bond donor, and one aromatic ring.
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binding site cavities of the selected targets, and one donor 
group in the middle which is deemed important for estab-
lishing conventional hydrogen bonds with Tyr-326, Asn-253, 
and Gln-110B of MAO-B, AA2AR, and NMDAR active site, 
respectively.

3.3. Molecular docking results

The docking protocol implemented in the Glide module was 
validated by redocking the crystal ligands of human MAO-B, 
AA2AR, and NMDAR (GluN1/2B). Native ligands were down-
loaded from the PubChem database with the following CIDs: 
131682 for safinamide, 176407 for ZM-24138, and 3689 for 
ifenprodil (Kim et al., 2021). The Ligprep module was 
employed for energy minimization using default settings. 
The root-mean-square deviation (RMSD) was calculated by 
superposing both docked and native ligands. The results 
yielded values of 0.12, 0.83, and 0.88 Å for MAO-B, AA2AR, 
and NMDAR which indicates a good accuracy of the docking 
program (Figure S4 in Supporting Information). The prepared 
and filtered compounds were initially screened using the 
generated pharmacophore model to remove the compounds 
that do not match the selected pharmacophoric sites. At this 
stage, 22 of 354 ligands were retained. Subsequently, 
molecular docking was conducted on the remaining com-
pounds against MAO-B, AA2AR and NMDAR active sites using 
Glide Extra Precision (XP) mode (Friesner et al., 2006). The 
chemical structures of the remaining compounds are shown 
in Figure 5. The docking scores and protein-ligand 

interactions are shown in Table 3. The selected binding 
poses of the two highest-ranking compounds with the 
selected targets are shown in Figure 6. The chemical space 
of the 22 compounds highlighting the top two lead com-
pounds, was visualized using t-SNE plots to assess their posi-
tioning relative to the reference compounds (Figure S5 in 
Supporting Information). The two lead compounds exhibited 
very close proximity, indicating a high degree of similarity. 
Additionally, in the AA2AR plot, the compounds overlapped 
with the reference active compounds. However, no similar 
active compounds were identified in the MAO-B and NMDAR 
datasets, implying the novelty of these drugs and the need 
for in vitro testing.

3.4. ADME evaluation results

ADME properties results for the selected NPs are shown in 
Table 4. Qikprop predicted aqueous solubility shows that all 
the compounds have values within the recommended range 
(–6.5 to 0.5) where 95% of similar values for known drugs 
fall inside. Predicted human oral absorption shows that most 
of the natural compounds have better oral absorption than 
the reference ligands, and thus greater bioavailability. 
Brain/blood partition coefficient (QPlogBB) was also pre-
dicted, all the values are within the range of recommended 
values for compounds that penetrate the blood-brain barrier 
(–3.0 to 1.2) (Boulaamane et al., 2022). Caco-2 cells are a 
good mimic for the gut-blood barrier, predicted apparent 
Caco-2 cell permeability cell is considered great if >500 and 

Figure 5. Chemical structures of the remaining 22 compounds selected for molecular docking against MAO-B, AA2AR, and NMDAR.
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poor if <25. The predicted QPPCaco values show that most 
compounds have medium-good Caco-2 cell permeability. 
Finally, the prediction of binding to human serum albumin 

(QPlogKhsa) yielded values for the studied compounds 
within the recommended range (–1.5 and 1.5) for 95% of 
known drugs.

Table 3. Molecular docking results of the retained NPs against MAO-B, AA2AR, and NMDAR.

Compound

Glide XP score (kcal/mol) Hydrogen bonds p–p interactions

MAO-B AA2AR NMDAR MAO-B AA2AR NMDAR MAO-B AA2AR NMDAR

Safinamide –11.5 –9.1 –9.5 Gln-206 Glu-169 Asp-113BAsp-136B Tyr-326 — Tyr-109APhe-114B
ZM-241385 –9.9 –10.8 –9.4 Cys-172Tyr-188 Glu-169Asn-253 Tyr-110AIle-133A Tyr-326 Phe-168Hid-250 Tyr-109A
Ifenprodil –7.7 –6.5 –11.2 Cys-172Tyr-188 Tyr-271 Gln-110BGlu-236B — Hid-250 Phe-114BPhe-176B
CNP0121426 –12.0 –12.4 –10.0 Leu-171 Asn-253 Gln-110B Phe-168Tyr-326 — Tyr-109APhe-176B
CNP0242698 –12.4 –11.4 –9.5 Ile-198Gly-434 Asn-253Ile-66 Gln-110BArg- 

115AGlu-236B
Tyr-398Tyr-435 — Phe-114BPhe-176B

CNP0003630 –10.9 –9.3 –9.3 Ile-198Gly- 
434Tyr-435

Phe-168Ile- 
66Ile-80

Gln-110BGlu-236B Tyr-435 — Phe-176B

CNP0338199 –10.6 –9.1 –9.0 Ile-199 Asn-253Ala-63 Tyr-109A — Phe-168 —
CNP0164042 –9.1 –10.3 –9.0 Ile-198Tyr-435 Glu-169Tyr-271 Gln-110BGlu-236B Tyr-435 — Phe-176B
CNP0339796 –8.4 –8.6 –11.1 Ile-198 Asn-253Ile-66 Tyr-109AThr-110A — — —
CNP0173232 –10.4 –9.8 –7.4 Tyr-398 Glu-169Asn-253 Thr-110AIle- 

133AGln-110B
Tyr-326Tyr-398 Phe-168 Tyr-109A

CNP0120429 –9.7 –8.9 –8.9 Gly-434 — Gln-110BGlu-236B Tyr-435 Tyr-271 Phe-176B
CNP0098669 –9.4 –9.7 –8.4 — Asn-253 Gln-110B — Phe-168 Tyr-109A
CNP0308376 –9.6 –9.3 –8.6 — Ile-80Glu-169 Tyr-109AGln-110B Tyr-398 Phe-168 Tyr-109A
CNP0277064 –9.8 –9.3 –8.3 Pro-102Gly-434 Asn-253 Glu-106BThr-110A Tyr-398 — —
CNP0045881 –9.6 –11.4 –6.5 Gln-65 Asn-253 — Tyr-326 Phe-168 Tyr-109A
CNP0017161 –10.2 –8.6 –8.5 Ile-66Phe- 

168Glu-169
Gln-110B — Phe-114B

CNP0007586 –9.2 –9.6 –8.5 — Asn-253 Gln-110B Tyr-326 Phe-168 —
CNP0357529 –9.8 –8.8 –8.6 Glu-169 Ser-132A Phe-168 —
CNP0359286 –9.7 –8.9 –8.5 — Asn-253 Gln-110B — — Tyr-109A
CNP0418636 –10.0 –7.5 –9.0 Gly-434Tyr-435 — — Tyr-326 Phe-168Tyr-271 Tyr-109A
CNP0031460 –9.2 –8.9 –7.8 — Asn-253 — — Phe-168 Tyr-109APhe-114B
CNP0017024 –7.3 –9.1 –8.9 Gln-206 — Gln-110B Tyr-326 Phe-168 Tyr-109A
CNP0041400 –8.6 –7.2 –7.5 — Asn-253 Glu-236B Trp-119 — Phe-176B
CNP0462114 –7.1 –7.2 –6.5 — Asn-253 Thr-110A — Phe-168 —
CNP0010379 –5.8 –8.0 –5.8 — Asn-253 Gln-110B Tyr-326 — Phe-176B

Figure 6. Selected binding conformations of the most potent multi-target ligands: CNP0121426 (a) and CNP0242698 (b) with MAO-B (1), AA2AR (2), and 
NMDAR (3).
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3.5. Molecular dynamics simulations

The results obtained from the molecular docking study could 
be further validated using MD simulations to assess the sta-
bility of the selected NPs under dynamic conditions. 
Therefore, to further validate the docking results, 
CNP0121426 and CNP0242698 in complex with MAO-B, 
AA2AR, and NMDAR were subjected to 100 ns MD simulations 
and compared to the reference ligands, safinamide, ZM- 
241385, and ifenprodil under the same conditions. Several 
parameters including root mean square deviation (RMSD) of 
Ca atoms, ligand RMSD with respect to protein, root mean 
square fluctuation (RMSF) of Ca atoms of the proteins, and 
protein-ligand interactions were analyzed from the MD simu-
lation trajectories.

3.5.1. Root-mean square deviation
In Figure 7, the RMSD plots for the chosen compounds and 
reference ligands bound to MAO-B, AA2AR, and NMDAR are 
presented. RMSD values indicate the degree of movement 
exhibited by the protein and ligand from their original posi-
tions, and hence, the stability of the complex. Notably, the 
CNP0121426-MAO-B complex demonstrated high RMSD 
values of Ca atoms, reaching approximately 4.8 Å, while 
CNP0242698-MAO-B remained stable at around 3 Å by the 
last 50 ns in similar manner to the reference complex. The 
ligand RMSD for the reference inhibitor, safinamide was sta-
bilized at 1.2 Å as demonstrated in previous studies (Kurczab 
et al., 2018). Meanwhile, a higher deviation was observed for 
CNP0121426 reaching 1.8 Å, while CNP0242698 was stabilized 
at 2.5 Å. The significant variations observed can be attributed 
to the remarkable flexibility of CNP0242698, which possesses 
rotatable bonds that impact the ligand’s ability to undergo 
conformational changes to find the optimal binding pose.

Regarding the reference structure of AA2AR, the Ca atoms 
exhibited RMSD value of 4.8 Å, whereas CNP0121426 and 
CNP0242698 showed a more stable RMSD at 4 and 3 Å, respect-
ively. However, the reference antagonist ZM-241385 demon-
strated a consistent RMSD of approximately 0.6 Å, while 
CNP0121426 and CNP0242698 displayed a deviation of 6 Å. The 
increased variances observed can be explained by the expansive 
binding pocket of AA2AR, which permits the smaller ligands to 
undergo diverse conformations throughout the simulation 
period.

In the case of NMDAR, the three protein-ligand complexes 
exhibited comparable deviations, ranging from 2 to 3.5 Å, 
consistent with the findings reported in the literature (Touati 
et al., 2023). Specifically, the CNP0121426 and CNP0242698 
complexes had slightly higher deviations of 3.2 and 3.5 Å, 
respectively. In contrast, the antagonist ifenprodil demon-
strated remarkable stability, exhibiting deviations of less than 
1.0 Å when bound to both chains A and B of NMDAR. 
However, CNP0121426 showed larger deviations of 6 Å, while 
CNP0242698 exhibited stabilized RMSD values at 1.5 Å, which 
are considered acceptable for lead compounds.

3.5.2. Root-mean square fluctuation
The RMSF is a useful analytical tool for observing atomic fluc-
tuations in protein chains during MD simulations (Benson & 
Daggett, 2012). Figure 8 displays RMSF plots that highlight 
areas of the protein that experience the most movement, 
with peaks indicating high levels of fluctuation. It is common 
for the N-terminal and C-terminal ends of the protein to 
exhibit greater fluctuation compared to other regions. 
Secondary structure elements, such as a-helices and b-strands, 
tend to be more rigid and less flexible than loop regions, 
resulting in lower levels of fluctuation. In Figure 9, the MAO-B 

Table 4. ADME prediction results of the retained NPs from the Hybrid virtual screening study.

Compound QPlogPo/w QPlogS %HOA QPlogBB QPPCaco QPlogKhsa

Safinamide 1.9 –2.1 76.2 –0.4 112.5 –0.2
ZM-241385 1.6 –4.0 73.3 –1.9 108.7 –0.2
Ifenprodil 3.7 –3.9 95.0 –0.3 392.8 0.5
CNP0121426 4.2 –6.3 100.0 –1.1 760.0 0.5
CNP0242698 3.4 –4.9 87.7 –2.1 188.0 0.3
CNP0003630 2.5 –2.9 74.9 –1.2 75.4 –0.1
CNP0164042 3.5 –4.0 95.9 –1.2 526.0 0.2
CNP0338199 3.2 –3.2 90.5 –0.5 321.8 0.2
CNP0173232 3.2 –4.7 100.0 –0.9 791.1 0.3
CNP0339796 1.6 –2.6 71.8 –1.0 93.7 –0.2
CNP0120429 3.7 –4.6 100.0 –0.9 1256.8 0.3
CNP0098669 3.9 –5.1 100.0 –1.3 654.6 0.5
CNP0308376 4.0 –4.5 100.0 –1.2 592.7 0.5
CNP0277064 3.9 –5.2 96.2 –1.7 389.7 0.4
CNP0045881 1.2 –3.6 75.6 –1.8 204.7 –0.9
CNP0017161 3.2 –4.4 100.0 –0.6 862.1 0.2
CNP0007586 2.8 –4.3 96.8 –0.6 952.2 0.0
CNP0357529 4.1 –4.7 100.0 –0.9 1146.7 0.6
CNP0359286 4.8 –5.3 100.0 –0.9 1294.1 0.8
CNP0418636 3.9 –5.3 100.0 –1.7 539.3 0.3
CNP0031460 4.9 –5.3 100.0 0.5 6952.4 0.6
CNP0017024 2.4 –4.0 88.4 –0.9 462.7 –0.1
CNP0041400 2.1 –4.8 83.6 –1.2 297.8 –0.1
CNP0462114 3.0 –4.3 94.3 –0.9 621.4 0.1
CNP0010379 2.3 –5.0 84.6 –1.0 292.2 –0.1

QPlogPo/w: Predicted octanol/water partition coefficient. QPlogS: Predicted water solubility; %HOA: Percentage of human oral absorption; 
QPlogBB: Predicted brain/blood partition coefficient; QPPCaco: Predicted apparent Caco-2 cell permeability in nm/sec; QPlogKhsa: 
Prediction of binding to human serum albumin.
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Figure 7. RMSD analysis of Ca atoms (Left) and the corresponding ligands (right) of the selected targets: MAO-B (a), AA2AR (B), and NMDAR (C) in complex with 
the reference ligands, CNP0121426, and CNP0242698.

Figure 8. RMSF plots of the selected targets: MAO-B (A), AA2AR (B), and NMDAR (C) in complex with the reference ligands, CNP0121426, and CNP0242698.
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enzyme’s residues remained consistently stable when bound 
to the selected compounds, with all fluctuations remaining 
below 2 Å during the simulation. The study revealed that the 
highest level of fluctuation observed in all three MAO-B 
complexes was at 14 Å. However, these residues were not 
involved in ligand binding, as they were in the C-terminal 
region. This indicates a slight conformational change in the 
enzyme rather than any significant impact on ligand binding.

The RMSF analysis of AA2AR revealed significant fluctua-
tions of approximately 4.8 Å in certain regions. Specifically, 
residues 210–230 showed high flexibility in all three com-
plexes, which is consistent with findings in the literature (Ng 
et al., 2013). However, the ligand-binding regions experi-
enced less fluctuation, with values of around 2.4 Å in the ref-
erence and CNP0121426 complex. In contrast, the same 

region exhibited higher fluctuations in the CNP0242698 com-
plex, indicating a potential conformational change due to 
the ligand’s mode of binding.

In the case of NMDAR, the RMSF analysis highlighted high 
fluctuations of approximately 5 Å in certain regions that were 
not involved in ligand binding. However, the amino acids 
within the binding site that made contact with the ligands 
experienced much lower levels of fluctuation, approximately 
1.6 Å, indicating excellent stability of the ligands within their 
respective binding cavities in all complexes.

3.5.3. Protein-ligand interactions
The role of each amino acid in protein-ligand interactions was 
unveiled by the simulation results. Figure 9 displays the diagrams 

Figure 9. Protein-ligand interaction histograms of safinamide, CNP0121426, and CNP0242698 in complex with MAO-B displaying the fraction of interactions with 
active amino acids. On the right, schematic representations of the ligands with the percentage of interactions with the protein residues.
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of the molecular interactions with MAO-B, indicating that most 
of the interactions with the active site of MAO-B are hydropho-
bic. In the reference complex, Leu-171 formed one preserved 
hydrogen bond. Due to the hydrophobic nature of the cavity, 
most other interactions were also hydrophobic. The crucial 
hydrophobic interactions were primarily formed by Ile-199 and 
Tyr-326, which serve as the gating residues responsible for sub-
strate and inhibitor specificity (Boulaamane et al., 2023; Milczek 
et al., 2011). In addition, CNP0121426 formed hydrogen bonds 
with Cys-172, Ser-200, and Tyr-326. The simulation also high-
lighted the presence of strong water bridges involving Ile-198. 
Furthermore, CNP0242698 mainly interacted with Ser-200 and 
Gly-434 through hydrogen bonds. Other hydrophobic interac-
tions with Ile-316, Tyr-398, and Tyr-435 of the aromatic cage 
were also observed.

Figure 10 displays the protein-ligand interactions for 
AA2AR. The simulation results confirm the presence of a 

strong hydrogen bond involving Asn-253 between the antag-
onist ZM-241385 and AA2AR, consistent with previous litera-
ture (Welihinda et al., 2016). Additionally, another hydrogen 
bond involving Ala-63 was identified, along with several 
hydrophobic interactions involving Phe-168, Leu-249, and 
His-250. In the case of CNP0121426, a hydrogen bond was 
observed involving Glu-169, and significant hydrophobic 
interactions were identified with Phe-168 and His-264. 
However, CNP0242698 exhibited a greater number of interac-
tions, including hydrogen bonds and water bridges with Ala- 
59, Ile-80, Val-84, His-250, and Asn-253.

Figure 11 illustrates the highlighted interactions between 
NMDAR and the selected compounds. As per the literature, 
the reference antagonist consistently binds with B:Gln-110 
via hydrogen bonding (Kumar & Patnaik, 2016), while add-
itional hydrogen bonds are observed with B:Glu-106 and 
B:Glu-236. Several hydrophobic interactions were also 

Figure 10. Protein-ligand interaction histograms of ZM-241385, CNP0121426, and CNP0242698 in complex with AA2AR displaying the fraction of interactions with 
active amino acids. On the right, schematic representations of the ligands with the percentage of interactions with the protein residues.
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detected, involving residues from the binding pocket of 
chains A and B, such as A:Tyr-109, B:Ile-111, and B:Phe-176. 
Regarding CNP0121426, a water-mediated hydrogen bond 
maintains the hydrogen bond with B:Gln-110, whereas strong 
hydrogen bonds were identified with A:Arg-115 and A:Leu- 
135. In contrast, in CNP0242698, hydrogen bonding primarily 
involved A:Leu-135 and B:Glu-236.

3.5.4. Principal component analysis
Principal component analysis (PCA) is a methodology 
employed for the analysis of the motion of biomolecular sys-
tems during MD simulations. PCA was conducted on the 
studied complexes, which included explicit water molecules, 

using the MD trajectory from the last 50 ns of simulations 
(David & Jacobs, 2014). The first principal component (PC1) 
captures the highest amount of variance in the dataset, fol-
lowed by PC2 and subsequent components. Consequently, 
we employed PC1 and PC2, calculated from the backbone 
atoms, to generate a lower-dimensional projection of the 
entire dataset suitable for 2D visualization using an essential 
Python script in Desmond (Bharadwaj et al., 2021), was used. 
Valuable insights into the protein’s domain movements and 
essential dynamics during ligand binding were obtained. In 
Figure 12, the projection of the two chosen PCs is presented 
for all complexes. It is understood that complexes occupying 
a smaller phase space and displaying a stable cluster indicate 
greater stability, whereas those occupying a larger space and 

Figure 11. Protein-ligand interaction histograms of ifenprodil, CNP0121426, and CNP0242698 in complex with NMDAR displaying the fraction of interactions with 
active amino acids. On the right, schematic representations of the ligands with the percentage of interactions with the protein residues.
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exhibiting a non-stable cluster correspond to less stable 
complexes. In MAO-B, CNP0242698 displayed conformational 
motions that followed a similar trend to the reference com-
plex. On the other hand, in AA2AR, CNP0121426 showed the 
closest resemblance in terms of conformational changes to 
the reference complex. However, in NMDAR, CNP0121426 
exhibited the narrowest range of motions, followed by the 
reference complex and CNP0242698.

3.5.5. MM-GBSA binding free energy calculation
We conducted MM-GBSA-based binding free energy calcula-
tions using the pose viewer file of the docked complexes, 
and the results are presented in Table 5. The binding free 
energy values reached values of −147.29, −63.92 and 
−38.98 kcal/mol for MAO-B, AA2AR, and NMDAR, respectively. 
To assess the binding vigor of MAO-B with safinamide, 
CNP0121426, and CNP0242698, we further decomposed 
the MM-GBSA binding energies into individual components. 
It was observed that Van der Waals binding energy played 
a significant role in the three compounds’ interaction 
with MAO-B, with average binding free energy values of 
−119.1, −111.9, and −119.1 kcal/mol, respectively. Regarding 

AA2AR, the calculated DGbind values for CNP0121426 
(–59.24 kcal/mol) and CNP0242698 (–63.92 kcal/mol) were 
in close proximity, consistent with the earlier molecular dock-
ing findings. In the case of NMDAR, CNP0121426 
(–35.72 kcal/mol) and CNP0242698 (–38.98 kcal/mol) exhibited 
similar results to the reference antagonist, ifenprodil. 
Notably, electrostatic interactions (Coulomb energy) and Van 
der Waals forces emerged as significant contributors to lig-
and binding, as indicated by the high DG values.

4. Conclusion

Multitargeting strategies are emerging as a promising 
approach for the management of neurodegenerative dis-
eases. The current study introduces a novel approach inte-
grating data-driven drug discovery and molecular modeling 
to screen for potential multi-target compounds from the 
largest available NPs database. QSAR models were developed 
for three pivotal targets in PD: MAO-B, AA2AR, and NMDAR. 
Subsequently, we used the best models for each target to 
predict the bioactivity of the NPs. The predicted active com-
pounds were then subjected to pharmacophore screening 

Figure 12. PCA plots for the MD simulations trajectories for MAO-B (A), AA2AR (B), and NMDAR (C) in complex with the reference ligands, CNP0121426, and 
CNP0242698.

Table 5. Post-MD simulation binding free energy components of the selected protein-ligand complexes calculated using MM-GBSA approach.

Protein-ligand complexes

MM-GBSA (kcal/mol)

DGBind DGCoul DGHbond DGLipo DGvdW

MAO-B Safinamide –137.90 ± 6.43 0.97 ± 27.32 –13.50 ± 0.66 –30.65 ± 0.92 –119.10 ± 3.72
CNP0121426 –139.43 ± 7.23 –2.78 ± 15.27 –11.11 ± 0.43 –31.09 ± 1.41 –111.89 ± 4.01
CNP0242698 –147.29 ± 4.36 –5.03 ± 21.27 –11.84 ± 0.51 –31.74 ± 0.93 –119.07 ± 2.47

AA2AR ZM-241385 –61.80 ± 3.61 –12.01 ± 2.26 –0.99 ± 0.23 –18.64 ± 0.84 –49.32 ± 1.84
CNP0121426 –59.24 ± 3.45 –5.68 ± 2.54 –0.15 ± 0.23 –13.71 ± 1.37 –48.06 ± 3.62
CNP0242698 –63.92 ± 3.22 –6.24 ± 1.81 –0.02 ± 0.05 –19.14 ± 1.41 –43.62 ± 2.32

NMDAR Ifenprodil –36.87 ± 0.34 –24.72 ± 0.23 –3.94 ± 0.12 –4.52 ± 0.28 –32.17 ± 0.41
CNP0121426 –35.72 ± 0.27 –22.48 ± 0.31 –2.02 ± 0.17 –5.74 ± 0.25 –29.08 ± 0.37
CNP0242698 –38.98 ± 0.33 –26.19 ± 0.28 –4.79 ± 0.15 –4.39 ± 0.34 –34.65 ± 0.33

DGBind: free energy of binding; DGCoul: Coulomb energy; DGHbond: hydrogen bonding energy; DGLipo: hydrophobic energy; DGvdW: Van der Waals 
energy.
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and molecular docking. Two natural lead candidates, 
CNP0121426 and CNP0242698, belonging to the dihydrochal-
cones and curcuminoids chemical classes, respectively, exhib-
ited the highest compound rankings. Further structural 
analysis revealed favorable interactions within the binding 
sites of all three targets. The stability of the lead candidates 
in complex with the selected targets was further assessed 
through MD simulations. Despite the high RMSD with respect 
to the protein, curcuminoid demonstrated improved stability 
in the case of MAO-B. Similarly, the structure of AA2AR com-
plexed with the curcuminoid exhibited higher stability com-
pared to the reference complex. However, the inherent 
flexibility of the ligand resulted in higher ligand RMSD ini-
tially, which eventually stabilized by the end of the simula-
tion, suggesting that it requires more time to accommodate 
an optimal orientation within the binding pocket. In NMDAR, 
although more protein deviations were observed, curcumi-
noid, CNP0242698 exhibited good stability compared to the 
dihydrochalcone ligand. Overall, the curcuminoid complexed 
with the studied structures displayed superior stability com-
pared to the dihydrochalcone, indicating its potential as a 
multitarget agent in combating PD. Results obtained from 
the current study may generate an increased shift of interest 
toward developing novel antiparkinsonian drugs with neuro-
protective activities from NPs. However, additional experi-
mental studies are needed to further validate these findings.
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