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ABSTRACT Global challenges presented by multidrug-resistant Acinetobacter bauman
nii infections have stimulated the development of new treatment strategies. We reported 
that outer membrane protein W (OmpW) is a potential therapeutic target in A. bauman
nii. Here, a library of 11,648 natural compounds was subjected to a primary screen
ing using quantitative structure-activity relationship (QSAR) models generated from 
a ChEMBL data set with >7,000 compounds with their reported minimal inhibitory 
concentration (MIC) values against A. baumannii followed by a structure-based virtual 
screening against OmpW. In silico pharmacokinetic evaluation was conducted to assess 
the drug-likeness of these compounds. The ten highest-ranking compounds were found 
to bind with an energy score ranging from −7.8 to −7.0 kcal/mol where most of them 
belonged to curcuminoids. To validate these findings, one lead compound exhibiting 
promising binding stability as well as favorable pharmacokinetics properties, namely 
demethoxycurcumin, was tested against a panel of A. baumannii strains to determine its 
antibacterial activity using microdilution and time-kill curve assays. To validate whether 
the compound binds to the selected target, an OmpW-deficient mutant was studied 
and compared with the wild type. Our results demonstrate that demethoxycurcumin in 
monotherapy and in combination with colistin is active against all A. baumannii strains. 
Finally, the compound was found to significantly reduce the A. baumannii interaction 
with host cells, suggesting its anti-virulence properties. Collectively, this study demon
strates machine learning as a promising strategy for the discovery of curcuminoids as 
antimicrobial agents for combating A. baumannii infections.

IMPORTANCE Acinetobacter baumannii presents a severe global health threat, with 
alarming levels of antimicrobial resistance rates resulting in significant morbidity and 
mortality in the USA, ranging from 26% to 68%, as reported by the Centers for Dis
ease Control and Prevention (CDC). To address this threat, novel strategies beyond 
traditional antibiotics are imperative. Computational approaches, such as QSAR models 
leverage molecular structures to predict biological effects, expediting drug discovery. 
We identified OmpW as a potential therapeutic target in A. baumannii and screened 
11,648 natural compounds. We employed QSAR models from a ChEMBL bioactivity data 
set and conducted structure-based virtual screening against OmpW. Demethoxycurcu
min, a lead compound, exhibited promising antibacterial activity against A. baumannii, 
including multidrug-resistant strains. Additionally, demethoxycurcumin demonstrated 
anti-virulence properties by reducing A. baumannii interaction with host cells. The 
findings highlight the potential of artificial intelligence in discovering curcuminoids 
as effective antimicrobial agents against A. baumannii infections, offering a promising 
strategy to address antibiotic resistance.
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A ntimicrobial resistance (AMR) in Gram-negative bacteria (GNB) has become a serious 
problem in recent years, with potentially devastating impacts on the economy 

and human life (1). The need for more effective and safer antimicrobial compounds 
has become increasingly urgent in the post-antibiotic era (1). Acinetobacter baumannii, 
one of the six superbug Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumo
niae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE) 
pathogens, is a global priority pathogen for the development of effective antimicrobial 
therapies, due to rapid changes in the genetic constitution of A. baumannii and the 
plasticity to acquire different resistance mechanisms (2–4). The scarce development of 
efficient antibiotics against this microorganism has sparked renewed scientific interest in 
finding effective antimicrobial agents capable of killing, inhibiting growth, or inhibiting 
the activity of essential virulence factors of A. baumannii (5).

The extensive functions of outer membrane proteins (OMPs) in GNB have led to their 
identification as potential drug targets (6). Among the OMPs, outer membrane protein 
W (OmpW) is a porin playing a pivotal role in the uptake of nutritional substances 
such as iron (7). Several studies have highlighted the relevance of OmpW as a potential 
drug target in GNB. For instance, researchers investigated how A. baumannii adapts to 
low oxygen conditions during infection. They found that OmpW was downregulated in 
hypoxic conditions. To understand its role as a virulence factor, they studied the effects 
of OmpW loss in A. baumannii. They discovered that the absence of OmpW reduced 
in vitro the bacterium’s ability to adhere to and invade host cells, to cause cell death, 
and to form biofilm without affecting its growth and in vivo the pathogenicity of A. 
baumannii (8). Similarly, Vibrio cholerae mutant strains lacking OmpW showed reduced 
colonization in the mouse intestine compared with strains expressing OmpW (9). The 
collective evidence from these studies strongly suggests that OmpW plays a crucial role 
in bacterial pathogenesis and could be a promising target for the development of drugs 
aimed at combating GNB infections.

Natural products have long been a subject of great interest in the development 
of novel antimicrobial drugs (10). These products, derived from plants, animals, and 
microorganisms, have been used for centuries by various traditional medicine systems to 
treat infections (11).

Chemical libraries enable comprehensive virtual drug screening by offering a diverse 
range of compounds. Large databases enhance the integration of advanced methods 
like machine learning and artificial intelligence for accurate prediction of drug proper
ties. For example, Massachussetts Institute of Technology (MIT) researchers used artificial 
intelligence to identify a potent new antibiotic known as halicin. This compound 
demonstrates efficacy against a wide range of bacteria, including some that exhibit 
resistance to all known antibiotics. Furthermore, halicin displayed no significant side 
effects in mice, prompting researchers to plan further development and clinical trials 
(12). Recently discovered by researchers at the University of Toronto in 2021, abaucin 
exhibits promising efficacy against the lethal superbug A. baumannii. Although still 
in early development, it holds significant potential in the treatment of drug-resistant 
infections (13).

Thus, the objective of the present study was to screen a large library of natural 
products with potential activity against A. baumannii using “in silico” and “in vitro” assays. 
The screening focused on compounds targeting the function of OmpW. A library of 
11,648 natural compounds was retrieved from Ambinter chemical library, and an in silico 
approach combining data-driven and molecular modeling methods for drug discov
ery was employed. Artificial-based quantitative-structure activity relationship (QSAR) 
models were developed to predict the bioactivity of the natural products against A. 
baumannii. The retained compounds were subsequently subjected to molecular docking 
screens and absorption, distribution, metabolism, and excretion (ADME) evaluation 
to assess their pharmacological and pharmacokinetic profiles. The best compounds, 
which exhibited a strong affinity for OmpW along with favorable pharmacokinetic 
properties, were further evaluated through molecular dynamics simulations. Finally, a 
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lead candidate was subjected to in vitro testing to assess its potential for inhibiting A. 
baumannii growth.

RESULTS

QSAR screening

In this study, four machine learning algorithms known for their efficacy in QSAR 
modeling were chosen: random forest, support vector machine, k-nearest neighbors, and 
Gaussian naïve Bayes, based on previous reports of their performance (14). Furthermore, 
we have developed a convolutional neural network (CNN) using sequential architecture 
consisting of embedding, convolutional, pooling, flattened, and dense layers. Beginning 
with an embedding layer mapping input data to dense vectors, the model subsequently 
utilizes two convolutional layers with rectified linear unit (ReLU) activation for feature 
extraction, followed by max-pooling layers for dimensionality reduction. The flattened 
output is fed into dense layers, facilitating non-linear transformations and classification. 
With a final sigmoid activation layer for binary classification, the model is trained using 
binary cross-entropy loss and Adam optimizer, aiming to discern compound properties 
efficiently for screening active compounds against A. baumannii. The hyperparameters 
of the four machine learning classifiers underwent optimization using the GridSearchCV 
module within Scikit-Learn (v1.2.2) (15).

The performance of the QSAR classification models was evaluated using area under 
the curve (AUC) scores, with all models demonstrating excellent AUC values, as depicted 

FIG 1 Performance of QSAR classification models on test and validation sets. The ROC curve and AUC values illustrate model performance. The CNN model 

resulted as the best classifier in the test and validation sets. QSAR: quantitative structure-activity relationship; ROC: receiver-operating characteristic; AUC: area 

under the curve; CNN: convolutional neural network.

TABLE 1 Performance metrics of the generated classification models on the testing and validation setsa

Data set Model SE SP Q+ Q− ACC F1 score MCC

Testing set Random forest 0.89 0.92 0.88 0.94 0.91 0.89 0.82
Support vector machine 0.88 0.91 0.85 0.93 0.90 0.91 0.78
k-nearest neighbors 0.88 0.93 0.88 0.92 0.91 0.92 0.80
Naïve Bayes 0.58 0.96 0.96 0.56 0.72 0.72 0.53
Convolutional neural network 0.83 0.96 0.95 0.88 0.90 0.92 0.81

Validation set Random forest 0.86 0.91 0.86 0.91 0.89 0.91 0.77
Support vector machine 0.81 0.91 0.86 0.87 0.87 0.89 0.72
k-nearest neighbors 0.79 0.96 0.94 0.85 0.88 0.90 0.77
Naïve Bayes 0.53 0.93 0.94 0.49 0.66 0.64 0.45
Convolutional neural network 0.81 0.97 0.96 0.86 0.90 0.91 0.80

aSE: sensitivity (true positive rate); SP: specificity (false positive rate); Q+: positive predictive value (precision); Q−: negative predictive value; ACC: accuracy; MCC: Matthews’ 
correlation coefficient.
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in Fig. 1. Furthermore, the performance of QSAR models was assessed using various 
metrics such as precision, F1 score, accuracy, and Matthews correlation coefficient (MCC), 
as outlined in Table 1. Notably, the CNN model exhibited excellent performance on 
both the test and validation sets, achieving an AUC value of 0.96. Consequently, it was 
chosen to predict the activity of Ambinter drug-like natural compounds by comparing 
their molecular descriptors with those in the training data set and leveraging the 
learned relationships. At this step, 1,193 compounds were identified as active against 
A. baumannii and subsequently selected for the structure-based virtual screening study.

Docking screens of natural products

The quality assessment of the AlphaFold model of OmpW (Uniprot ID: A0A335FU53) 
(16, 17), according to Ramachandran plot, shows that 92.2% of residues are in the most 
favorable regions, 7.2% in allowed regions, 0.6% in generously disallowed regions, and 
0.0% in disallowed regions. Validation of the OmpW structure using Protein Structure 

FIG 2 Ramachandran plot for OmpW displaying the distribution of each amino acid within the favored, allowed, and disallowed regions (A). Scatter plot 

and Z-score revealing the overall model quality of OmpW (B). Chemical structures of the top ten highest-scoring compounds against OmpW. OmpW: outer 

membrane protein W (C).
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Analysis-web (ProSA-web) shows a Z-score value of −4.95, which is within the range of 
scores typically found for native proteins of similar size (Fig. 2A and B). The predicted 
active compounds were subjected to molecular docking screens, and their binding 
affinities were ranked accordingly. Specifically, we observed that the highest-ranking 
compounds exhibit binding scores ranging from −7.0 to −7.8 kcal/mol and belong to 
curcuminoids as shown in Fig. 3. The amino acids involved in the ligand binding are 
presented in Table 2.

Docking poses of the highest-ranking compounds are displayed in Fig. 3. In brief, 
the structural analysis of the docked compounds reveals consistent hydrogen bond 
formation between the hydroxyl (-OH) group of the phenyl ring in curcuminoids and 
the amino acid residue GLN-23. Furthermore, we detected additional hydrogen bond 
interactions implicating key residues, namely ASN-104, THR-109, and LYS-195, situated 
within the periplasmic site of OmpW. Additionally, our analysis reveals multiple instances 
of hydrophobic interactions, with notable involvement of amino acid residues PHE-59, 
HIS-101, ASN-144, and GLN-146.

ADME evaluation

A significant proportion, approximately 40%, of drug candidates fail during clinical trials 
primarily due to inadequate ADME properties (18). In silico ADME prediction offers a 
rapid method to assess the drug-likeness of a compound by calculating its physicochem
ical properties. This approach substantially reduces the time and resources required 
during the overall drug development process. In this study, SwissADME 

FIG 3 Binding conformations of the top four highest-ranking natural products: Amb22174074 (A), Amb8401505 (B), Amb2698241 (C), and Amb8399162 (D) in 

complex with OmpW’s periplasmic region. OmpW: outer membrane protein W.
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(http://www.swissadme.ch/) was employed to compute various pharmacokinetic 
properties of the highest-scoring compounds to evaluate their drug-likeness and 
suitability for further experimental studies (19). ADME properties for the selected 
compounds are shown in Table 3. The results reveal that all the compounds possess 
good lipophilicity in accordance with Lipinski’s rule of five; moreover, water solubility 
values were found to be in the recommended range for most drugs. Intestinal absorption 
was found to be high in all the compounds. Of the top 10 compounds tested for blood-
brain barrier (BBB) permeability, only five were found to be unable to penetrate the BBB. 
This is a crucial finding, as antibacterial compounds should not exert their effects on the 
central nervous system (CNS). None of the compounds were found to act as a P-glycopro
tein substrate; thus, their bioavailability is not impacted by this protein. Finally, the pan-
assay interference compounds (PAINS) test has revealed four compounds presenting one 
alert in their structure due to the presence of the catechol group, which can result in 
non-specific binding with various target proteins.

Molecular dynamics simulations and binding free energy

In the molecular docking study, the protein structure was treated as rigid. To gain 
deeper insights into the protein-ligand interactions, molecular dynamics simulations 
were performed on the docked complexes in a water environment for 100 ns. The 
root-mean square deviation (RMSD) was measured relative to the OmpW structure 
bound to the selected candidates. Fig. 4A illustrates the protein RMSD values for the 
top four complexes, showing a consistently stable RMSD of 0.3 nm during most of the 
simulation, except for Amb22174074, which displayed higher fluctuations exceeding 
0.3 nm in the last 20 ns. The analysis of the ligand RMSD showed values between 0.1 
and 0.25 nm for most ligands, suggesting minor conformational changes during the 

TABLE 2 Structure-based virtual screening results of the selected natural compounds against OmpW of A. baumannii

Compound Binding score 
(kcal/mol)

Hydrogen bonds Hydrophobic interactions

Amb22174074 −7.8 GLN-23, SER-193, LYS-195 PHE-59, HIS-101, ASN-144, GLN-146, LYS-195
Amb8401505 −7.7 GLN-23, PHE-102, ASN-104, ASN-144, TRP-153, 

SER-193
PHE-59, HIS-101, LYS-103, ASN-144, LYS-195

Amb2698241 −7.5 GLN-23, HIS-101, SER-193, LYS-195 PHE-59, THR-109, ASN-144, GLN-146, LYS-195
Amb8399162 −7.4 GLN-23, ASN-104, SER-193, LYS-195 PHE-59, LYS-103, THR-109, ASN-144, LYS-195
Amb8401506 −7.4 PHE-102, ASN-104, GLN-146, LYS-195 PHE-59, HIS-101, LYS-103, LYS-195
Amb22172936 −7.4 GLN-23, ARG-107, THR-109, TRP-153, LYS-195 HIS-101, LYS-103, THR-109, ASN-144, GLN-146, LYS-195
Amb22173712 −7.4 GLN-23, THR-109, SER-193, LYS-195 PHE-59, HIS-101, LYS-103, THR-109, ASN-144, GLN-146, 

LYS-195
Amb10550080 −7.3 GLN-23, ASN-104, THR-109, ASN-152, SER-193 PHE-59, HIS-101, LYS-195
Amb23604248 −7.2 ASN-104, THR-109, ASN-144, GLN-146, SER-193 PHE-59, LYS-103, THR-109
Amb23604228 −7.0 GLN-23, ASN-104, ASN-144, SER-193, LYS-195 GLN-23, ASN-104, ASN-144, SER-193, LYS-195

TABLE 3 ADME properties’ prediction results for the selected compounds

Compound LogS GI absorption BBB P-gp substrate Bioavailability score PAINS

Amb22174074 −4.88 High Yes No 0.55 0 alert
Amb8401505 −3.73 High No No 0.55 Catechol_A
Amb2698241 −3.92 High No No 0.56 0 alert
Amb8399162 −4.01 High Yes No 0.55 0 alert
Amb8401506 −3.87 High Yes No 0.55 Catechol_A
Amb22172936 −4.17 High Yes No 0.55 0 alert
Amb22173712 −4.02 High Yes No 0.55 0 alert
Amb10550080 −3.11 High No No 0.55 Catechol_A
Amb23604248 −3.11 High No No 0.55 Catechol_A
Amb23604228 −3.39 High Yes No 0.55 0 alert
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simulation. However, the ligand Amb8399162 deviated from this trend, with an RMSD 
of 0.35 nm, suggesting a more significant conformational change (Fig. 4B). In Fig. 5C, 
the graph illustrates the variations observed in each amino acid. Notably, the N-terminal 
region exhibited the highest fluctuations, which is a common characteristic. For all 
other residues, minor fluctuations of approximately 0.1 nm were observed, except for 
Amb8399162, which displayed fluctuations higher than 0.2 nm in certain regions of the 
periplasm. Finally, hydrogen bonds within a proximity of 0.35 nm were documented. 
Fig. 4D depicts the hydrogen bonds observed at 100 ns, with Amb2698241 forming 
four hydrogen bonds, highlighting its stable and consistent binding to the protein. 
The average free binding energy of the selected complexes was determined using the 
g_mmpbsa package (v1.6) (20, 21).

The binding energy was computed by combining the scores of Van der Waals energy, 
electrostatic energy, polar solvation, and SASA energy as presented in Table 4. The 
highest binding energy was observed in Amb2698241 (−45.23 kJ/mol), suggesting a 
strong binding to the target protein.

Antibacterial activity

The best compound exhibiting the lowest docking score as well as favorable ADME 
properties was demethoxycurcumin (Amb2698241). The MIC was then assessed using 
microdilution assays against different reference A. baumannii ATCC 17978 strains, its 
isogenic mutant deficient in OmpW, and colistin-resistant A. baumannii clinical isolates. 
Demethoxycurcumin inhibited bacterial growth at a concentration of 64 mg/L for all the 
studied strains (Table 5).

Colistin potentiation is critical for safeguarding this last resort antibiotic as it is 
often our only treatment option against highly resistant Gram-negative pathogens. 

FIG 4 Molecular dynamics simulations analysis through protein RMSD (A), ligand RMSD (B), RMSF (C), and hydrogen bonds at 100 ns (D).
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We examined whether demethoxycurcumin can sensitize colistin-resistant clinical strain 
CR17. Checkerboard assay showed that demethoxycurcumin at ≥1  mg/L demonstra
ted synergy with colistin against CR17 strain. Demethoxycurcumin at ≥8  mg/L in 

FIG 5 In vitro antibacterial activity of demethoxycurcumin. Representative heat plots of microdilution checkerboard assay for the combination of colistin and 

demethoxycurcumin against colistin-resistant A. baumannii CR17 strain (A). Bacterial growth for colistin and demethoxycurcumin monotherapy and combination 

therapy against colistin-resistant A. baumannii CR17 strain during 24 h incubation. The concentrations of colistin and demethoxycurcumin are 1 and 16 mg/L, 

respectively. The data are presented as means ± standard errors of the means (SEM), and analysis of variance (ANOVA) test followed by the post hoc Tukey test 

was used for statistical analysis. *P < 0.05: colistin vs no treatment, demethoxycurcumin plus colistin vs no treatment, and demethoxycurcumin plus colistin 

vs colistin, **P < 0.01: demethoxycurcumin plus colistin vs demethoxycurcumin, ***P < 0.001: demethoxycurcumin plus colistin vs no treatment (B). Bacterial 

growth curve plots of A. baumannii ATCC 17978 and A. baumannii ΔOmpW in the absence and presence of demethoxycurcumin treatment at different 

concentrations (C). Analysis of A. baumannii ATCC 17978 and ΔOmpW adhesion to HeLa host cells with and without demethoxycurcumin treatment. The data are 

presented as means ± SEM, and student t-test was used for statistical analysis. *P < 0.05: treatment vs no treatment (D).

TABLE 4 List of average and standard deviations of all energetic components including the binding energy taken from MM-PBSA analysis

Complex MMPBSA (kJ/mol)

ΔGbind ΔGvdW ΔGelec ΔGsolv ΔGsasa

Amb22174074 −35.03 ± 20.08 −118.74 ± 16.41 −45.52 ± 24.70 144.30 ± 33.25 −15.10 ± 1.63
Amb8401505 −41.92 ± 17.02 −122.42 ± 15.16 −42.96 ± 15.32 139.20 ± 22.25 −15.74 ± 1.58
Amb2698241 −45.23 ± 17.96 −115.48 ± 18.37 −37.25 ± 11.57 122.31 ± 23.21 −14.81 ± 1.54
Amb8399162 −39.11 ± 16.56 −143.59 ± 18.84 −35.11 ± 16.60 156.61 ± 30.64 −17.01 ± 1.94
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combination with colistin increased the activity of colistin against CR17 strain, with 
a fractional inhibitory concentration index (FICI) of <0.2 (Fig. 5A). In addition, the 
combination between 16 mg/L demethoxycurcumin and 1 mg/L colistin exhibited a 
synergistic effect during 2 and 4 h, reducing the bacterial growth compared with colistin 
demethoxycurcumin alone (Fig. 5B).

Using bacterial growth assays, we examined the antibacterial activity of demethoxy
curcumin against ATCC 17978 and ΔOmpW strains. Figure 5C reveals that A. baumannii 
ATCC 17978 exhibits rapid growth, reaching 0.5 OD within the first 4 h. However, a 
noticeable disparity in growth is observed between the control sample and the samples 
treated with demethoxycurcumin, particularly at higher compound concentrations (2× 
MIC and 4× MIC). A similar trend of growth inhibition is observed in the ΔOmpW strain, 
although it demonstrates a higher OD value compared with A. baumannii ATCC 17978 
in the presence of demethoxycurcumin treatment. This disparity in growth can be 
attributed to the resistance of the mutant strain to the compound, as the absence of 
OmpW may hinder the compound’s ability to exert its effect, as indicated by the findings 
of the molecular docking study.

In addition, and to evaluate the effect of demethoxycurcumin on A. baumannii 
interaction with host cells, we studied the adherence of ATCC 17978 and ΔOmpW strains 
to HeLa cells for 2 h in the presence of demethoxycurcumin. Treatment with demethoxy
curcumin at 1× MIC reduced the adherence of ATCC 17978 and ΔOmpW strains to HeLa 
cells by 36% and 16%, respectively (Fig. 5D).

DISCUSSION

In this study, we present a multi-stage approach for screening bioactive compounds 
from extensive databases. This approach combines data-driven QSAR models and 
structure-based virtual screening methods for drug discovery. Our classification models 
demonstrated strong performance in distinguishing between active and inactive 
compounds, achieving AUC values ranging from 0.85 to 0.96 for the testing set and 0.84 
to 0.96 for the validation set. The results of molecular docking indicated binding affinities 
spanning from −5.4 to −7.8 kcal/mol. Notably, the top-scoring compounds belong to the 
curcuminoid chemical class, recognized for their antibacterial activities (22, 23).

Analysis of molecular interactions revealed a consistent hydrogen bond formation 
with GLN-23 in most of the compounds under study. Additional hydrophobic interac
tions involved the following amino acids: PHE-59, HIS-101, ASN-144, and GLN-146. 
Molecular dynamics analysis of the first four complexes displayed remarkable stability 
throughout the simulation, except for the tricyclic compound Amb22174074, which 
exhibited some deviations, leading to an RMSD of 0.3 nm. This observation could be 
attributed to the inherent limited flexibility of this compound, prompting conformational 
changes in the protein.

Furthermore, our investigation identified van der Waals energy as the primary 
contributor to the stability of the complexes, as determined by the MMPBSA method. To 

TABLE 5 MIC results for the studied compounds against different wild-type, colistin-resistant, and 
OmpW-deficient A. baumannii

A. baumannii strain MIC (mg/L)

Colistin Demethoxycurcumin

ATCC 17978 0.25 64
ATCC17978 ΔOmpW 0.25 64
Ab11 256 64
Ab20 64 64
Ab21 128 64
Ab22 128 64
Ab99 64 64
Ab113 256 64
CR17 32 64
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validate our in silico results, we assessed a lead candidate, demethoxycurcumin, for its in 
vitro activity in monotherapy and in combination with colistin against an extensive range 
of A. baumannii strains, including colistin-resistant strains. This lead candidate presents 
an antibacterial activity as shown by microdilution and time-kill curve assays. Notably, a 
reduction in compound activity against OmpW-deficient mutant has been observed in 
the time-kill curve assay. Li et al. showed that demethoxucurcumin present antibacterial 
activity in monotherapy and in combination with gentamicin against another pathogen, 
methicillin-resistant Staphylococcus aureus (24)

Our findings suggest the crucial role of the OmpW in facilitating the compound’s 
activity. Previous studies reported the binding of colistin and tamoxifen metabolites to 
OmpW (25, 26).

Bacterial adhesion to and invasion into host cells are important steps in causing A. 
baumannii infection (27). It is well-known that OmpW plays a key role in host-pathogen 
interactions. Deletion of OmpW reduced A. baumannii’s adherence and invasion into host 
cells, as well as its cytotoxicity (8). Similarly, in the absence of OprG, which is homolo
gous to OmpW in P. aeruginosa, this pathogen was significantly less cytotoxic against 
human bronchial epithelial cells (28). OmpW is essential for A. baumannii to disseminate 
between organs and to cause the death of mice, as observed for other pathogens such 
as V. cholerae (9). Motley et al. reported an increase in OmpW expression during E. coli 
infection in a murine granulomatous pouch model (29), and OmpW has been shown 
to protect E. coli against host responses, conferring resistance to complement-mediated 
killing and phagocytosis (30, 31). All these previous studies indicated that OmpW could 
be a potential drug target in GNB to develop new treatments. However, no data have 
been reported on the effect of natural products on host-A. baumannii interactions. To our 
knowledge, this study provides the first evidence for the effect of demethoxycurcumin 
in reducing A. baumannii’s adherence to host cells. Moreover, this effect is consistent 
with time-kill curve data. Further studies are needed, such as animal infection models, to 
validate the potential use of demethoxycurcumin as monotherapy and in combination 
with antibiotics used in clinical settings.

In summary, this study demonstrated a multi-step computational and experimental 
approach to identify natural products as potential therapeutics targeting the OmpW 
protein of A. baumannii. Demethoxycurcumin was validated as an active lead compound 
both in vitro and in reducing bacterial interaction with host cells. Further investigations 
are necessary, such as testing in animal models of infection, to validate the therapeutic 
potential of targeting OmpW by demethoxycurcumin and related natural products.

MATERIALS AND METHODS

QSAR modeling

A bioactivity data set from the ChEMBL database, which comprised the chemical 
structures of 11,014 compounds along with their reported MIC values against A. 
baumannii, was acquired (32). To ensure the reliability of the data, the data set by 
only keeping those with MIC values of the same unit (mg/L) was carefully curated. For 
duplicate compounds with multiple reported activities, a mean value was calculated, and 
only one entry was kept in the study using the Pandas (v2.2.0) library in Python (33). The 
processed data set consisted of 3,196 compounds. To classify the compounds, molecules 
with reported MIC values < 32 were labeled as active, whereas molecules with MIC >64 
were labeled as inactive. This resulted in 1,310 active compounds and 816 inactive 
compounds. For further analysis, the RDKit cheminformatics suite (v2023.09.4) was used 
to generate 2,048 bits of molecular descriptors using Morgan fingerprints (34, 35). These 
descriptors were derived from the compounds’ Simplified Molecular-Input Line-Entry 
System (SMILES) representation and were based on the widely used extended-connectiv
ity fingerprints (ECFP4) (36).

To support the training and assessment of our QSAR models, we partitioned the data 
sets into a unified train/test set (80%) and a distinct validation set (20%). Within the 
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train/test set, an 80/20 split further divided the data into train and test subsets for model 
training and evaluation, respectively. The validation set was exclusively allocated for the 
final evaluation of the selected model’s performance on unseen data, as depicted in Fig. 
6. A standard workflow for our proposed QSAR approach, along with the source code, 
can be found in the GitHub repository (https://github.com/yboulaamane/QSARBioPred/).

Protein structure preparation

To refine and enhance the quality of the 3D protein model, the online server Galax
yRefine (https://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE) was used (37). The 
platform employs a multi-step approach that involves side-chain rebuilding, side-chain 
repacking, and molecular dynamics simulation to achieve overall structure relaxation. 
Subsequently, the PROCHECK algorithm was employed through the SAVES webserver 

FIG 6 The QSARBioPred workflow outlines the processes involved in constructing QSAR models aimed at predicting the likelihood of a compound being 

active against A. baumannii. This involves generating molecular fingerprints of the compounds and employing machine learning techniques to discern patterns 

correlated with activity. Subsequently, the model enables the screening of novel compounds for potential activity against A. baumannii.
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(https://saves.mbi.ucla.edu/) (38) to generate Ramachandran plots, whereas ProSA-web 
was used to assess model accuracy and statistical significance using a knowledge-based 
potential (39).

Binding site detection

The plausible binding pockets for the selected OmpW protein structure were predicted 
using PrankWeb ligand binding site prediction webserver (https://prankweb.cz/) (40). Fig. 
S1 depicts the 3D structure of OmpW with their predicted binding pockets shown as 
residues with different colors. The predicted binding pockets scores, grid coordinates, 
and residue IDs are shown in Table S1.

Structure-based virtual screening

The natural compounds were retrieved from Ambinter natural compounds library 
(https://www.ambinter.com/). Eleven thousand six hundred forty-eight compounds were 
evaluated for their drug-likeness by computing their physicochemical properties such as 
molecular weight, LogP, number of hydrogen bond donors/acceptors, and the number 
of rotatable bonds DataWarrior (v06.01.00) (41). According to Lipinski’s rule of five, 
only 6,151 compounds were retained for further analysis (42). Structure-based virtual 
screening was performed using AutoDock Vina (v1.1.2) with a Perl script to automate the 
molecular docking process as published in our previous study (43, 44). The 3D structure 
of OmpW was optimized using AutoDockTools (v1.5.6) by adding polar hydrogens and 
computing Kollman charges (45). The grid box was centered around the coordinates 
provided by PrankWeb for the best-scoring pockets. The pocket (2) located near the 
periplasmic of the β-barrel structure was selected for molecular docking as mentioned in 
the literature (46).

Docking snapshots were generated using UCSF Chimera 1.17.3 (47). Molecular 
interactions were visualized using Protein-Ligand Interaction Profiler (https://plip-
tool.biotec.tu-dresden.de/plip-web/plip/index) (48).

Molecular dynamics simulations and binding free energy calculation

Molecular dynamics simulations were performed using GROMACS (v2019.3) (49, 50) to 
evaluate the stability of selected candidates in complexes with OmpW. The CHARMM36 
force field generated the protein topology file, whereas the CGENFF server assigned 
parameters to ligands (51). TIP3P water model solvated the protein-ligand systems 
in a cubic box, with Na+ and Cl− ions added for charge neutrality. To optimize the 
energy, the steepest descent technique was employed, setting Fmax not to exceed 1,000 
kJ/mol/nm. Subsequently, two consecutive 1 ns simulations using canonical constant 
number of molecules, volume and temperature (T) (NVT) and isobaric constant number 
of molecules, pressure and temperature (NPT) ensembles were performed to equili
brate the systems at 300 Kelvin and 1 bar pressure. All simulations were conducted 
under periodic boundary conditions (PBC), and long-range electrostatic interactions 
were handled using the particle mesh Ewald method (52). For data collection, 100 
ns molecular dynamics simulations were conducted. To analyze the dynamic behavior 
of the selected complexes, various geometric properties such as root-mean-square 
deviation (RMSD), root-mean-square fluctuation (RMSF), and hydrogen bonds were 
calculated using GROMACS (v2019.3) (53).

The binding free energies of the screened complexes were calculated using the 
molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) method (54). The 
binding free energy (ΔEbinding) is determined using the following equations:

(1)ΔEbinding = Ecomplex − Einhibitor + EOmpW
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Equation 1 is the total MMPBSA energy of the protein-ligand complex, where EOmpW 
and Einhibitor are the isolated proteins and ligands’ total free energies in solution, 
respectively.

(2)ΔGbinding = ΔGvdW + ΔGelec + ΔGsolv + ΔGsasa

Equation 2 defines the generalized MMPBSA as the sum of four energies: electrostatic 
(ΔGelec), van der Waals (ΔGvdw), polar (ΔGsolv), and SASA (ΔGsasa).

Antibacterial activity assays

Microdilution assay

The MIC of demethoxycurcumin was determined against ATCC 17978 strain, an isogenic 
mutant deficient in OmpW, and seven colistin-resistant A. baumannii clinical strains, 
along with 24 clinical strains, in two independent experiments using the broth microdilu
tion method, in accordance with the standard guidelines of the European Committee on 
Antimicrobial Susceptibility Testing (EUCAST) (55). A 5 × 105 CFU/mL inoculum of each 
strain was cultured in Luria Bertani (LB) and added to U bottom microtiter plates (Deltlab, 
Spain) containing demethoxycurcumin. The plates were incubated for 18 h at 37°C.

Bacterial growth curve assay

To determine the antibacterial activity, bacterial growth curves of the ATCC 17978 strain 
and its isogenic deficient in OmpW (ΔOmpW) and CR17 strain were performed in 
triplicate in 96-well plate (Deltlab, Spain). An initial inoculum of 5 × 105 CFU/mL was 
prepared in LB in the presence of 1× MIC, 2× MIC, and 4× MIC of demethoxycurcumin. 
A drug-free broth was evaluated in parallel as a control. Plates were incubated at 37°C 
with shaking, and bacterial growth was monitored for 24 h using a microtiter plate reader 
(Tecan Spark, Austria).

Checkerboard assay

The assay was performed on a 96-well plate in duplicate as previously described (56). 
Colistin was 2-fold serially diluted along the x axis, whereas demethoxycurcumin was 
2-fold serially diluted along the y axis to create a matrix, where each well consists 
of a combination of both agents at different concentrations. Bacterial cultures grown 
overnight were then diluted in saline to 0.5 McFarland turbidity, followed by 1:50 further 
dilution LB and inoculation on each well to achieve a final concentration of approxi
mately 5.5 × 105 CFU/mL. The 96-well plates were then incubated at 37°C for 18 h and 
examined for visible turbidity. The fractional inhibitory concentration (FIC) of the colistin 
was calculated by dividing the MIC of colistin in the presence of demethoxycurcumin 
by the MIC of colistin alone. Similarly, the FIC of demethoxycurcumin was calculated 
by dividing the MIC of demethoxycurcumin in the presence of colistin by the MIC of 
rafoxanide alone. The FIC index was the summation of both FIC values. FIC index values 
of ≤0.5 were interpreted as synergistic.

Human cell culture

HeLa cells were grown in 24-well plates in Dulbecco's Modified Eagle medium 
(DMEM) supplemented with 10% heat-inactivated fetal bovine serum (FBS), vancomycin 
(50 mg/L), gentamicin (20 mg/L), amphotericin B (0.25 mg/L) (Invitrogen, Spain), and 
1% 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) in a humidified incubator 
with 5% CO2 at 37°C. HeLa cells were routinely passaged every 3 or 4 days. Immedi
ately before infection, HeLa cells were washed three times with prewarmed phosphate 
buffered saline (PBS) and further incubated in DMEM without FBS and antibiotics (57).
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Adhesion assay

HeLa cells were infected with 1 × 108 CFU/mL of A. baumannii ATCC 17978 and ΔOmpW 
strains in the absence and presence of 1× MIC of demethoxycurcumin at a multiplicity 
of infection (MOI) of 100 for 2 h with 5% CO2 at 37°C. Subsequently, infected HeLa 
cells were washed five times with prewarmed PBS and lysed with 0.5% Triton X-100. 
Diluted lysates were plated onto LB agar (Merck, Spain) and incubated at 37°C for 24 h 
for enumeration of developed colonies and then the determination of the number of 
bacteria that attached to HeLa cells (8). All experiments were performed in triplicate.

Statistical analysis

The GraphPad Prism 9 (version 9.3.1; GraphPad Software, LLC.) statistical package was 
used. Group data are presented as bar plots and means ± standard errors of the means 
(SEM). To determine differences between means, an ANOVA test followed by the post 
hoc Tukey test and Student t-test was used for the bacterial growth assay and the 
adherence/invasion assay, respectively. P value of <0.05 was considered significant.
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